NPPF 第 11 段在“有利于可持续发展的假设”下,列出了在哪些情况下应偏向于授予许可。如果发展规划中没有相关政策,或者相关政策“过时”,则属于这种情况。这些情况成为一项重大考虑因素,使平衡工作从中立平衡“倾斜”到必须有令人信服的理由才能拒绝授予许可的平衡。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
与我们的业务开发团队一起,您将拥有一个单一的访问点,以供所有投资机会和我们的整个投资组合。有一笔交易还是想分享一个想法?与我们的业务发展团队的成员接触。
量子技术目前正在开发能够操纵单量子系统的量子技术。在量子领域的嫁妆中,纠缠是新型量子革命的基本资源之一。在这种情况下,当操纵系统状态时,人们面临着保护纠缠的问题。在本文中,我们研究了经典驾驶场对两个量子与波体环境相互作用的发电纠缠的影响。我们讨论了经典领域对两个(不同)量子位之间的纠缠产生的影响,以及它在保护初始状态纠缠免受其环境引起的衰减中具有建设性作用的条件。尤其是在类似Qubit的情况下,我们找到了系统的固定子空间,希尔伯特空间的固定子空间的特征是不取决于环境属性以及经典驾驶场上。因此,我们能够确定与环境短暂相互作用后达到最大纠缠的固定状态的条件。我们表明,总体而言,经典驾驶领域在强耦合体制中对纠缠保护具有建设性作用。另外,我们说明可以在与环境相互作用后的纠缠状态,甚至是在纠缠的稳态中驱动的可分解初始状态。
基于输运模型,结合现实的三维体介质展开,研究了粲偶素定向流。非中心对称核-核碰撞可以产生具有对称破缺纵向分布的旋转夸克胶子等离子体(QGP)。在√sNN=200GeVAu+Au半中心碰撞中,粲偶素在初始硬过程中原始产生,它们主要被初始高温倾斜源解离,然后移出体介质,以保留介质的早期信息。原始产生的粲偶素的动量分布受QGP流体动力学膨胀的影响较小,因为其倾斜形状被稀释。这种有偏解离可以产生J/ψ和ψ(2S)的定向流,它们比轻带电强子和开重味子的值大得多。粲偶素定向流有助于量化原子核-原子核碰撞中 QGP 初始能量密度的快度奇数分布。
Valleytronics是一个研究领域,利用电子自由度来进行信息处理和存储。强的山谷极化对于现实的山谷应用至关重要。在这里,我们预测,基于二维(2D)山谷材料的多合一隧道交界处的倾斜dirac费米子驱动的隧道谷效应(TVHE)。这些隧道连接中电极和间隔区域的不同掺杂导致隧道式迪拉克费米子的动量滤波,从而产生依赖于dirac-cone倾斜的强横向山谷霍尔电流。使用现有2D谷材料的参数,我们证明了这种TVE比先前报道的固有浆果曲率机制所引起的电视强得多。最后,我们预测,具有适当设计的设备参数(例如间隔宽度和传输方向)可以在隧道交界处发生共振隧道,从而可以显着增强山谷霍尔角。我们的工作开辟了一种新的方法,以在现实的谷化系统中产生山谷两极分化。
我们研究了倾斜的Weyl半准薄膜的表面等离子体极化的分散体和光谱。倾斜的Weyl半含量在Weyl节点处具有倾斜的Weyl锥,并用封闭的费米表面和I型II分类为I型,并带有过时的Weyl锥和开放的费米表面。我们发现,即使在没有外部磁场的情况下,该系统的表面等离子体极化的分散也是非偏置的。此外,我们证明了倾斜参数对控制这种非进取心具有深远的作用。我们揭示了II型Weyl半分化的薄膜以负基组速度托有表面等离子体极化模式。此外,我们表明该结构的角光谱是高度不对称的,并且在吸收性和反射率中,这种角度不对称性在很大程度上取决于倾斜的Weyl semimimetal的倾斜参数。这些令人兴奋的功能建议在光学传感设备,光学数据存储和量子信息处理的设备中使用倾斜的Weyl半学。
您的委员会发现,小费盗窃是对该州许多工人的生计的可靠威胁。倾斜的员工通常依赖于大部分收入的技巧,但由于其分配的不透明性质,提示是最简单的工资形式之一。此措施通过要求发布标牌来保护倾斜的员工及其收入,向客户和员工解释提示分配过程,并列出联系信息以报告违规行为。
无线通信和网络高级无线通信,卫星通信,地段,M2M,传感器网络,临时网络,认知无线电网络,绿色无线网络,4G和5G通信网络,安全性以及无线的保密性,无线,人工智能通信。网络安全,网络,云计算,服务质量,网络和多时间 - 图像和视频处理,压缩,编码和实现,加密和水印,RF和无线通信……。光学电信光通信,光学特性,用于电信的材料,带有光子晶体的光纤,光电组件,激光及其在电信,光子学,非线性和光学来源,非线性理论和微观倾斜的新应用和微观倾斜的应用程序中的应用中的应用和微观倾斜的技术,方法,超宽带天线和多播天线,AN-TENNA阵列分析/微型天线,MM-WAVE/SUB-MM-WAVE技术,微波设备建模,生物医学应用中的RF,RF/Microwave设备和组件,组件和组件,传输线和波导>