虽然氦气MS泄漏检测系统对小于10 -11 STD CC/sec的泄漏率敏感,但商业真空密封件仅因小于10 -10 STD CC/sec的泄漏率而获得认证。在这些情况下,可实现的敏感性与所报道的灵敏度之间的差异并不是由于存在较小的可测量泄漏(<10 -11 std cc/sec)。相反,降低的认证是由于难以使用可启用硬件进行可靠的泄漏测试。例如,所有金属焊接接头都可以轻松且可靠地证明泄漏速率低于10-11。对于大多数可启用的vacuum组件而言,这种类型的关节是不切实际的。即使在铜垫圈密封件的情况下,密封的过程不仅太耗时了,而且还会在外观上更改成品零件。
油润滑流体动力推力轴承依靠吸入汇聚空间的大量润滑剂供应,从而产生承载载荷的油膜。在许多情况下,通过将轴承的工作面浸入油中来保证润滑剂的供应。这种通常称为“淹没式”润滑的布置虽然对于较低的速度来说可以令人满意,但不太适合高速使用,因为它会导致轴承吸收大量能量。能量消耗来自两个来源:润滑膜剪切引起的必要摩擦损耗和推力环边缘在周围油中搅动引起的寄生损耗。搅动的影响在低速时并不明显,但在较高速度下(通常高于轴承平均节圆直径的 40 m/s),相关的能量损失迅速增加到等于甚至超过摩擦损耗。
无人驾驶飞行器 (UAV) 是一种飞行机器人,在民用和军用领域均有使用,且使用量呈急剧增长趋势。它们已广泛应用于民用领域,如执法、地球表面测绘和灾害监测,以及军事任务,如监视、侦察和目标捕获。随着对无人驾驶飞行器使用量的需求不断增长,在自主性、飞行能力和有效载荷方面具有更大进步的新型设计正在涌现,可携带更复杂、更智能的传感器。随着这些技术进步,人们将为无人驾驶飞行器找到新的作战领域。本论文主要研究新型无人驾驶飞行器 (SUAVI:萨班哲大学无人驾驶飞行器) 的设计、构造和飞行控制。SUAVI 是一种电动紧凑型四倾翼无人驾驶飞行器,能够像直升机一样垂直起降 (VTOL),并通过倾斜机翼像飞机一样水平飞行。它携带机载摄像机,用于捕捉图像并通过与地面站的射频通信进行广播。在 SUAVI 的气动和机械设计中,考虑了飞行时间、飞行速度、尺寸、电源和要执行的任务。气动设计是通过考虑气动效率的最大化和安全飞行特性来进行的。推进系统中的组件的选择是为了优化推进效率并满足要求
报告期内,公司经营范围未发生变化。公司经营范围为:研发、生产电子产品(包括防爆电气产品、通讯设备及相关附属设备、多媒体设备、传输及显示设备)、消防及监控产品、大数据及物联网软硬件产品、飞行器、机器人、智能装备及智能系统、实时通讯系统、汽车零部件及附件、汽车电信号设备、服务器及配套软硬件产品;销售自产产品;提供技术服务、电子技术咨询服务、培训服务(不含组织培训)、电子设备安装;电气工程、智能系统工程的设计、施工及维护。(国家禁止、限制类项目除外,涉及具体强制性许可证件的,须经批准的项目)(须按照项目核准,经相关部门批准方可经营)
用户手册 版权所有 ©2019 杭州海康威视数字技术有限公司。保留所有权利。 任何及所有信息,包括但不限于文字、图片、图表均归杭州海康威视数字技术有限公司或其子公司(以下简称“海康威视”)所有。未经海康威视事先书面许可,不得以任何方式复制、更改、翻译或分发本用户手册(以下简称“手册”)的全部或部分。除非另有规定,否则海康威视对本手册不作任何明示或暗示的保证、担保或陈述。 关于本手册 本手册适用于网络交通摄像机(以下简称“摄像机或设备”。本手册包括使用和管理产品的说明。以下的图片、图表、图像和所有其他信息仅供描述和解释。由于固件更新或其他原因,手册中包含的信息如有变更,恕不另行通知。请在本公司网站(http://overseas.hikvision.com/en/)上获取最新版本的用户手册,请在专业人士的指导下使用本用户手册。商标声明
I.简介 失明是世界上最常见的残疾之一。在过去的几十年里,因自然原因或事故而失明的人数有所增加。部分失明的人视力模糊,只能看到阴影,夜视能力差或视野狭窄。另一方面,完全失明的人没有视力。根据世界卫生组织的数据,全世界约有 22 亿视障人士或盲人 [1]。盲人传统上使用白手杖帮助他们在周围环境中导航,尽管这种方法无法提供远处移动障碍物的信息。此外,白手杖无法识别膝盖以上较高的障碍物。另一种帮助盲人的方法是使用经过训练的导盲犬。另一方面,经过训练的狗价格昂贵且难以获得。最近的研究 [2]-[9] 提出了几种可穿戴或手持电子旅行辅助设备 (ETA)。这些小工具中的大多数都包括各种传感器,可以绘制环境地图并通过耳机提供语音或声音警报。这些设备的可靠性受实时听觉信号质量的影响。许多当代 ETA 缺乏实时阅读辅助,用户界面差、成本高、便携性有限且没有免提访问。因此,这些小工具并不受盲人的欢迎,它们需要在设计、性能和可靠性方面进行改进,以便在室内和室外环境中使用。
在当今技术计算机化的世界,视力障碍人士面临着社会对抗的主要问题,他们认识到需要自力更生。他们在陌生的环境中苦苦挣扎,没有任何人工帮助。光学信息是大多数任务的基础,因此视力障碍人士处于不利地位,因为无法获得有关周围环境的必要信息。借助最新技术,可以为视力障碍人士提供支持。该项目旨在利用人工智能、机器学习、图像和文本识别来帮助那些失明或视力受损的人。这个想法通过移动应用程序体现出来,该应用程序明确专注于语音助手、图像识别、货币识别等。该应用程序还能够帮助用户使用语音命令识别日常生活中的物体,进行文本分析以识别硬拷贝文档中的文本。这将是视力障碍人士在技术的帮助下与世界联系并利用技术潜力的有效方式。
第二部分仍然保密,详细介绍了涉及Feedgy的PV温室试点系统的现实应用程序。本节提供了配备辐照传感器的实验设置。分析了自2024年2月以来收集的数据,以了解温室内的辐照行为。开发了一种基本的辐照模型,称为组成模型。该模型使用简化的光学,物理和几何系数结合了用于扩散辐照度的光学VF模型与直接辐照模型。模型验证和对实验数据的分析表明,该模型可以有效地执行,尤其是在阴天天数,显示内部和外部辐照行为之间的线性相关性很强。尽管具有简单性和效率,但由于试验系统和数据质量的限制,该模型仍存在局限性。尽管如此,它为APV市场中目前普遍存在的更复杂和计算密集的方法提供了一种有希望的替代方法。
双传感器,1/1.8" 逐行扫描 CMOS 全彩图像输出 分辨率最高可达 2688 x 1512 35 倍光学变焦,16 倍数字变焦 红外距离最远 250 米,智能红外 IP67,带雨刷
跟踪。由于 2-D 雷达提供的绘图数据仅包含距离和方位角信息,由于可观测性问题,无法使用单个传感器估计目标高度,因此需要结合从多个 2-D 雷达获得的信息(距离和方位角)。如果只有两个主雷达检测到飞机,则无法使用多点定位技术在空中交通管制系统中确定其高度。一次监视雷达 (PSR) 仅提供飞机的斜距和方位角测量,因此,空中交通管制 (ATC) 系统通常使用从飞机机载模式 C 应答器获得的高度信息来估计飞机的三维位置和速度。二次监视雷达 (SSR) 通常用于询问模式 C 和其他应答器并获取高度和其他