全球海洋基因组(海洋生物中的基因库及其编码的功能信息)是科学和社会的主要,未开发的资源,在生物医学,能源和食品等领域的生物技术应用不断增长。shot弹枪测序和宏基因组学现在可以用来分类海洋微生物寿命的多样性并探索其功能潜力,但受样本覆盖,访问合适的测序平台的访问和计算能力的限制。在这里,我们基于对2,102种采样的海洋宏基因组的分析提供了全球海洋基因组的新综合,并通过KAUST元基因组分析平台(KMAP)全球海洋基因目录1.0包含〜31750万基因簇的基因组装和注释。从分类学上,我们报告了海洋基因在生命之树以及不同的海盆和深度区域生物群落中的分布。在功能上,我们将其与蛋白质家族和生物地球化学过程的关系绘制,包括主要的微生物代谢途径,这些途径是处理三个元素在生物地球化学周期中起着基本作用的元素,并且与气候变化有关。这些数据扩展了我们对海洋微生物组及其代谢能力的复杂,动态性质的理解。进一步的研究对于释放海洋基因组的潜力并理解和预测人类引起的变化的影响,包括污染和气候变化至关重要。进一步的假设驱动的研究应使用增强的宏基因组方法靶向采样不足的深海和底栖微生物群落,以更好地了解海洋生态系统功能。对必要的计算能力进行投资至关重要,合适的知识产权框架也是必不可少的。
摘要:阅读障碍在同侧偏盲中很常见,被称为偏盲阅读障碍 (HD)。现有的治疗方法已显示出阅读速度、准确性和阅读过程中眼球运动的改善。然而,人们对这些治疗对日常生活中功能性阅读相关任务的转移效应知之甚少,例如阅读电话号码、查找打字错误或文本记忆。此外,人们对症状负荷和重返工作岗位的影响知之甚少。在这里,我们研究了一种新的阅读疗法,该疗法包含三种不同的方法——浮动文本、单词的快速连续视觉呈现 (RSVP) 和移动窗口技术——并评估了它们的疗效。27 名慢性 HD 患者在治疗前和治疗后几个月内接受基线设计治疗,中间有无治疗间隔。在四个时间点用一系列阅读测试和一份关于主观症状负荷的问卷来评估 HD。患者在几周内接受了所有三种阅读疗法。结果显示,在治疗期间,所有指标均有显著而稳定的改善。接受治疗的患者中约有 63% 在治疗后重返工作岗位。我们得出结论,我们新颖的 HD 治疗方法可广泛且持久地改善阅读能力,并扩展到功能性阅读任务,减轻症状负担,大多数患者都能够重返工作岗位。
大规模,手动注释的数据集的可用性在人类姿势估计中具有极大的先进研究,从2D单眼图像估计,这与诸如手势识别和动作识别之类的相关性密切相关。当前数据集(例如[1,16,20])主要包含来自我们所谓的轨道视图的图像,即侧面,前后视图,其中最重要的是,诸如对象或分裂的挑战,例如对象或分裂的挑战。他们专注于日常活动,例如站立,坐着和步行。因此,大部分研究都致力于解决遮挡和专业数据集([19,41]),以评估姿势估计模型在涉及封闭个体的情况下的有效性。不寻常的观点的问题受到了较少的关注。在我们所说的极端观点中(顶部和bot-
凹坑表面技术旨在通过涡流强化通道中的传热,同时保持水力损失的适度增长,该技术在热能工程中有着广泛的应用[1,2]。微电子领域对此也产生了一定的兴趣[3-5],而关于普朗特数对层流传热强化影响的研究发表得就更少了。具体来说,在综述[2]中提到了[6,7]项研究,其中讨论了变压器油在加热壁面上具有单排球形和椭圆形凹坑的微通道中的流动。研究发现,在一个加热到 30 ◦ C 的九段微通道(宽度为 2,高度为 0.5,以通道高度为单位)的壁上,在低速(雷诺数 Re = 308)变压器油流动的情况下,定位具有中等深度(0.2)和螺距为 1.5 的球形凹坑,可以促进涡流强化传热,并且与光滑通道的情况相比,该壁面的传热增加了约 2.5 倍,水力损失减少了 7%。与光滑通道的情况相比,具有相同斑点面积(宽度为 0.55,长度为 1.5,以底部凹坑斑点直径为单位)和相同深度的椭圆形凹坑可以使传热进一步增强 3.4 倍(即,总共增强了 8.5 倍),水力损失减少 2.1%。 [8] 中发现了具有稀疏单排倾斜槽的通道稳定段中层流气流的局部加速。形成剪切流中的最大纵向速度几乎是平面平行通道中最大流速的 1.5 倍。后来确定,热效率由冲洗通道上平均的相对总努塞尔特数指定
1 Django 文档 1 1.1 获取帮助 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................................2 1.4 模型层....................................................................................................................................................................................................................2 1.5 视图层....................................................................................................................................................................................................................................2 1.5 视图层....................................................................................................................................................................................................................................................2 1.6 视图层....................................................................................................................................................................................................................................................2 . 2 1.6 模板层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................................................................................................................................................................................................. 3 1.9 管理员....................................................................................................................................................................................................................................................................................................................................................................................... 3 1.10 安全....................................................................................................................................................................................................................................................................................................................................................................................................... 3 1.10 安全....................................................................................................................................................................................................................................................................................................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5
在距离处生成和维持量子纠缠仍然是量子信息科学的核心挑战。一个主要目标是利用基于摩尔定律的相同的可扩展技术和技术来扩展量子设备,以扩展量子设备,以使高速公路和富裕度所需的系统大小。在这项工作中,我们扩展了Wan等。al。2020 [1]通过演示和操纵原子记忆中的长期自旋自由度,作为基于硅氮化硅(SIN)光子光子整合电路(PICS)的立即量表平台的一部分。钻石中的氮呈(NV)中心等固体中的原子记忆使远程纠缠的产生能够出色的广告[2],尽管缺乏光学稳定性,尤其是在纳米制造的结构中,尤其是在纳米构造的结构中,她的努力是缩放的努力。组IV颜色中心(例如硅接收中心(SIV)中心由于其对称性保护的光学稳定性而引起了人们的关注[3]。但是,声子浴有限的连贯性要求大多数SIV中心运行约100 mk。正如我们在这项工作中所证明的那样,锡空位(SNV)中心的尺寸较大轨道分裂(SNV)中心可以以1 K [4]的速度进行操作温度。
脊椎动物的行为受光的强烈影响。由功能性视蛋白编码的光受体存在于脊椎动物的大脑和外周组织中。这种表达特征从鱼类到人类都存在,并且在昼行性脊椎动物中尤为突出。尽管视蛋白的广泛存在,但它们的非视觉功能在很大程度上仍然是个谜。考虑到视蛋白的数量之多,这一点就更加明显了。硬骨鱼类拥有大约 40 个视蛋白基因,从幼年发育阶段到成年期都存在。许多视蛋白已被证明具有光受体的功能。这就提出了一个问题:这么大的数量是否主要反映了功能冗余,或者更确切地说,最大限度地使硬骨鱼类能够最佳地利用水下存在的复杂光信息。我们重点研究了 tmt-opsin1b 和 tmt-opsin2,它们是具有祖先类型序列特征的 c-视蛋白,在几种脊椎动物门中都得到保守,在非视杆、非视锥、非视网膜神经节细胞的脑组织中表达部分相似,光谱灵敏度也相似。对单突变体的特征描述揭示了年龄和光依赖性行为变化,以及对前激素 sst1b 和电压门控钠通道亚基 scn12aa 水平的影响。在 tmt- opsin1b 突变体中,白天休息量受到的影响与眼睛、松果体和昼夜节律时钟无关。我们进一步研究了 tmt-opsin1b/2 双突变体的白天行为和分子变化,发现尽管它们具有相似的表达和光谱特征,但这些视蛋白在某种程度上以非加性方式相互作用。具体而言,双突变体以部分年龄依赖的方式补充单突变体中观察到的分子和行为表型。我们的工作为解开高度复杂的
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年6月19日。 https://doi.org/10.1101/2024.06.18.599612 doi:Biorxiv Preprint
简介沟通是倾向区议会的重要功能,为居民,企业和访客以及我们自己的员工提供信息。可以从如何访问我们的服务,政策变化以及支持透明度和开放性的范围内,以了解我们民主制度的决策。作为一个组织,每年都会倾视区议会进行大量出色的工作,以服务和改善我们地区居民,企业和游客的生活。其中一些工作可能非常明显:例如,新的建筑物和设施。但其中的大部分可能会在雷达下滑落,我们认为这是理所当然的,也许只有在事情发生不正确的罕见情况下才会注意到它。我希望我们对这项活动发光;不仅是为了庆祝它和我们的成功,而且在更基本的水平上,以帮助人们了解我们在理事会税或商业税率上支付的钱提供的东西。这些是我们愿景的核心原则 - 我们的公司计划,以及为什么审查这种交流策略以与理事会的顶级战略方向保持一致。在全球范围内的困难和不确定的时期,以及对我们作为理事会的金融时报挑战,我们必须建立 - 赚取 - 信任我们对当地社区所说的话。交流不是单向的,我们将努力倾听并与我们的社区交谈。我们必须是可信赖的权威声音,以解决不断增加的错误和不明智的声音(刻意和偶然);因此,比以往任何时候都重要,我们可以有效,有效地进行沟通,以便我们可以对我们服务的人负责并充当社区领导者。记住,我们的声誉不仅会影响我们作为地方当局,而且影响整个地区。