摘要 — 有人提出,通过植入皮层中的电极对初级视觉皮层 (V1) 进行电刺激,可帮助患有各种视力障碍的患者恢复视力。尽管成功诱发了人类受试者的视觉感知,但基于电极的皮层植入物的稳定性仍然有限,部分原因是复杂的生物和化学反应会随着时间的推移降低单个电极的有效性。此外,通过传统电极进行的电刺激无法避免激活远处神经元的轴突,从而降低了植入设备可能达到的潜在敏锐度。微线圈的磁刺激是一种潜在的传统电极替代品,因为使用感应来激活神经元可以提供长期稳定的界面,而且线圈产生的空间不对称场可以定向以避免不必要的轴突激活。我们在此介绍新型可植入微线圈,并通过体外和体内动物实验证明其有效性。
方法与结果:在 176 例接受 CRS 假体 TAVI 的连续患者中,7 例(3.9%)发生急性瓣膜脱位。对发生该并发症的患者的脱位机制和临床结果进行了全面分析。根据潜在机制,所有假体移位病例分为以下三类:1) 瓣膜植入后立即意外脱位(n=1;14.3%);2) 在圈套操作过程中脱位,以将 CRS 假体(下边缘 >10 毫米)重新定位在主动脉环下方,并伴有血流动力学显着的反流(n=4;57.1%); 3) 故意脱位,使用圈套手法进行,以应对冠状动脉口受损或严重假体漏气的情况,因为该装置部署得较高,密封性不佳,且存在瓣膜钙化(n=2;28.6%)。大多数病例发生在使用新型 Accutrak™(美敦力公司,美国明尼苏达州明尼阿波利斯)输送系统的早期体验中。在六名患者中,第二个 CRS 被植入到适当的位置。脱落的 CRS 功能正常,没有任何结构恶化、血栓形成或进一步远端移位的迹象,并完全贴合主动脉壁。任何患者均未报告血栓栓塞事件。
基因组编辑工具的出现,例如CRISPR-CAS9,已使遗传和基于细胞的疗法的发展用于治疗遗传疾病(Porteus,2019年)。进行了多项临床试验,以测试自体基因编辑的造血干细胞(HSC)的安全性治疗遗传疾病(NCT03655678,NCT04208529,NCT0485576肝脏的编辑以治疗经性淀粉样变性(ATTR,NCT04601051)或遗传血管性水肿(HAE,NCT05120830)(Frangoul等,2021; Gillmore等,2021)。值得注意的是,目前大多数开放临床试验都集中在基因敲除(KO)而不是同源性基因修复上。KO不需要同时递送同源序列来纠正引起疾病的突变,因此通常与较高的成功编辑效率有关。由于我们已经广泛的知识和骨髓中HSC移植的既定程序(Consiglieri等,2022)以及脂质纳米颗粒技术的可用性,因此这些示例的可行性得到了加速,并有效地靶向了肝脏(QIU等,20221)。Unfortunately, such techniques and technologies are not available for targeting the lung speci fi cally, therefore, expanding the use of genome editing tools to treat other inherited disorders, such as cystic fi brosis (CF), primary ciliary dyskinesia (PCD) and surfactant protein disorders impacting the lungs is of signi fi cant interest.图1总结了这些研究的发现。CF是由CF跨膜电导调节剂(CFTR)基因突变引起的。在这些情况下,体内基因组编辑受到挑战的限制,其中1)将基因组编辑试剂递送到所需的细胞中,基因校正所需的同源重组需要CRISPR-CAS9和CRISPR-CAS9和同源DNA才能将其传递到同一细胞中,以及2)对理想细胞/干细胞的长期疾病矫正的理解。EX-VIVO基因编辑可能是一种更有效的方法,但是基因编辑的细胞和调理方案的递送,使上皮接受细胞的植入而没有损害患者的肺功能,但仍表现出重要的挑战。在本研究主题中,我们提供了四篇文章,描述了产生自体基因校正的气道基底细胞(BCS),移植气道BC的努力,并讨论了扩展这些工具以治疗影响肺泡的表面活性剂蛋白质疾病的潜力。一个主要挑战是气道干细胞的有效基因校正,同时保持其再生潜力。许多基因校正工作都集中在CF上,因为它是影响肺部最有特征的遗传疾病之一(Suzuki等,2020; Vaidyanathan等,2020)。在CFTR中已经描述了2000多种不同的突变,因此,人们对替换整个CFTR编码序列的兴趣引起了极大的兴趣,以开发适用于所有CF患者的治疗。但是,CFTR编码序列(4,500 bp)接近常用腺相关病毒的包装极限
神经假体是一种精密医疗设备,旨在以闭环方式操纵大脑的神经信号,同时接收来自环境的刺激并控制人脑或身体的某些部分。大脑可以在几毫秒的间隔内处理传入的视觉信息。视网膜计算视觉场景并将其输出以神经元尖峰的形式发送到皮质进行进一步计算。因此,视网膜神经假体感兴趣的神经元信号是神经元尖峰。神经假体中的闭环计算包括两个阶段:将刺激编码为神经元信号,然后将其解码回刺激。在本文中,我们回顾了使用尖峰分析包括静态图像和动态视频在内的自然场景的视觉计算模型的一些最新进展。我们假设,为了更好地理解视网膜的计算原理,需要对视网膜进行超电路视图,在该视图中,在与视网膜交互时需要考虑皮质神经元网络中已揭示的不同功能网络模式。视网膜的不同组成部分包括多种细胞类型和突触连接——化学突触和电突触(间隙连接)——这使视网膜成为理想的神经元网络,可以采用人工智能中开发的计算技术来模拟视觉场景的编码和解码。为了推进下一代视网膜神经假体作为人工视觉系统的发展,需要采用具有神经元尖峰的视觉计算的整体系统方法。2020 作者。由爱思唯尔有限公司代表中国工程院高等教育出版社有限公司出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
Thesis Title: Visualizing A Thought-Actuated 3D Printed Prosthesis Thesis Author: Brett Walter Chief Advisor: James Perkins, MFA, CMI, FAMI Professor and Graduate Director Associate Advisor: Glen Hintz, MS Associate Professor Associate Advisor: Jade Myers, MS, PhD Associate Dean, College of Health Sciences & Technology: Carla Stebbins
本研究的目的是概述用于替代视力丧失的仿生眼,指出其缺陷并概述非侵入性刺激视觉皮层功能区域的其他可能性。该综述不仅强调了对主要改变的细胞结构的损害,还强调了对所有其他水平和垂直局部结构的损害。基于大量功能性磁共振成像和电生理学方法的结果,作者重点研究了色素性视网膜病变 (PR) 和老年性黄斑变性 (AMD) 中整个视觉通路的病理学。本研究概述了用于替代视力丧失的可能系统的最新情况。这些系统包括使用眼内植入物进行刺激,刺激视神经和外侧膝状体到视觉皮层。第二部分涉及图像处理技术的设计及其转化为对大脑未受损部分的颅脑刺激形式,该形式受专利保护。这是对当前替代丧失视力的可能性的全面概述,并提出了一种新的非侵入性刺激视觉皮层功能神经元的方法。
在过去十年中,我们见证了神经假体的快速发展,神经假体是一种将大脑与外部辅助和康复设备连接起来的系统。虽然这项工作主要研究的是能够实现手臂和手部感觉运动功能的神经假体,但人们对恢复运动能力(即在空间中移动的能力)的神经假体的兴趣也日益浓厚。大脑控制的轮椅和外骨骼就是这种神经假体的例子。本研究主题中的文章集合介绍并讨论了现有证据、概念框架、神经假体设计和有关将神经假体应用于步态辅助和康复的实际问题。研究主题涵盖了一系列问题,例如控制方案、机器人方面、有效性、运动性能特征、神经基础、伦理、对神经系统疾病的重要性、运动学习和运动功能恢复。这些贡献总结如下,分为 7 个主题类别:(i)评论和观点,(ii)动物研究,(iii)平衡控制,(iv)运动假肢,(v)肌电控制,(vi)基于脑电图 (EEG) 的下肢假肢控制系统,以及(vii)脊髓神经调节和外骨骼步态训练对瘫痪患者的综合影响。
视觉皮层电刺激有可能恢复盲人的视力。到目前为止,视觉皮层假肢的效果有限,因为没有假肢能够恢复完整的视力,但由于无线和技术的进步,该领域在最近几年重新引起了人们的兴趣。然而,为了实现这些新设备所期望的治疗效果,仍有许多科学和技术挑战需要解决。其中一个主要挑战是对大脑本身的电刺激。在这篇综述中,我们从电气的角度分析了基于电极的视觉皮层假肢的结果。我们首先简要介绍关于电极-组织界面和电刺激安全性的已知信息。然后,我们重点介绍假肢视觉的心理物理学以及视觉皮层电刺激与光幻视感知之间相互作用的最新进展。最后,我们讨论了视觉皮层电刺激和电极阵列设计在开发新一代可植入皮层视觉假肢方面所面临的挑战和前景。
6 神经技术和神经康复中心,神经病学系,麻省总医院,哈佛医学院,马萨诸塞州波士顿 * 共同资深作者 通讯作者:Maitreyee Wairagkar (mwairagkar@ucdavis.edu) David Brandman (dmbrandman@ucdavis.edu) Sergey Stavisky (sstavisky@ucdavis.edu) 摘要:脑机接口 (BCI) 有可能恢复因神经疾病或受伤而失去说话能力的人的交流。BCI 已被用于将试图说话的神经相关性转化为文本 1–3 。然而,文本通信无法捕捉人类语音的细微差别,例如韵律、语调和立即听到自己的声音。在这里,我们展示了一种“脑转语音”神经假体,它通过解码植入在患有肌萎缩侧索硬化症和严重构音障碍的男子腹侧中央前回的 256 个微电极的神经活动,瞬间合成具有闭环音频反馈的语音。我们克服了缺乏用于训练神经解码器的真实语音的挑战,并能够准确地合成他的声音。除了音素内容,我们还能够从皮层内活动中解码副语言特征,使参与者能够实时调节他的 BCI 合成语音以改变语调、强调单词和唱短旋律。这些结果证明了通过 BCI 让瘫痪者清晰而富有表现力地说话的可行性。简介:说话是人类的一项基本能力,失去说话能力对患有神经系统疾病和受伤的人来说是毁灭性的。脑机接口 (BCI) 是一种很有前途的治疗方法,它通过解码神经活动 4 来绕过神经系统受损的部分,从而恢复语言能力。BCI 的最新演示主要集中在将神经活动解码为屏幕上的文本 2,3 ,并且具有高精度 1 。虽然这些方法提供了恢复交流的中间解决方案,但仅靠文本交流无法提供具有闭环音频反馈的数字替代发声装置,也无法恢复人类语音的关键细微差别,包括韵律。