医疗机器人中的人工智能 (AI) 应用正在为医学带来新时代。先进的医疗机器人可以执行诊断和外科手术、辅助康复并提供共生假肢来替代肢体。这些设备中使用的技术,包括计算机视觉、医学图像分析、触觉、导航、精确操作和机器学习 (ML),可以让自主机器人执行诊断成像、远程手术、手术子任务甚至整个手术程序。此外,康复设备和先进假肢中的人工智能可以提供个性化支持,以及改进的功能和移动性(见图)。机器人技术、医学、材料科学和计算领域的非凡进步相结合,可以在未来带来更安全、更高效、更广泛的患者护理。–Gemma K. Alderton
小组讨论:美学与微笑设计中的创新1)数字假牙和3D印刷:老年人假肢解决方案的进步2)美学与微笑设计的创新 - 牙周化的观点3)审美和微笑设计的创新 -
摘要:目的。控制假肢的主要挑战是设备与使用者幻肢之间的通信。我们展示了通过有针对性的经皮神经电刺激 (tTENS) 增强截肢者幻肢感知和改善运动解码的能力。方法。对四名截肢参与者进行了经皮神经刺激实验,以绘制幻肢感知。我们在截肢者接受感官刺激之前和之后测量了幻肢运动过程中的肌电信号。使用脑电图 (EEG) 监测,我们测量了幻肢运动和刺激过程中感觉运动区域的神经活动。对于一名参与者,我们还跟踪了 2 年内的感官映射和 1 年内的运动解码表现。主要结果。结果显示,由于感官刺激,截肢者感知和移动幻肢手的能力有所提高,从而改善了运动解码。在对一名截肢者进行的扩展研究中,我们发现感觉映射在 2 年内保持稳定。值得注意的是,感觉刺激可改善 28 天内的运动解码,而表现在 1 年内保持稳定。从脑电图中,我们观察到感觉运动整合的皮质相关性和由于幻肢感知增强而增加的运动相关神经活动。31 意义。这项研究表明,幻肢感知会影响假肢控制,并且可以从有针对性的神经刺激中受益。这些发现对于改善假肢的可用性和功能具有重要意义,因为幻肢的感觉增强了。34
“军队培养的许多技能在商业领域都有很高的需求;网络安全、无人机技术、电信、物流、假肢和人工智能,仅举几例。退伍军人为国家做出了如此出色的贡献后,很可能在所有环境中做出贡献并蓬勃发展。”
它与减材制造相反,减材制造使用铣床等设备切割/挖空一块金属或塑料。3D 打印传统上用于原型设计,在制造假肢、支架、牙冠、汽车零件和消费品等方面具有广泛的应用。
Neuralink 计划扩大试验,目标是到 2025 年将实验设备植入 20 至 30 人体内。脑机接口 (BCI):BCI 是一种允许大脑与外部设备(如计算机或假肢)直接通信的技术,绕过神经和肌肉等传统神经肌肉通路。
象征的外观显着影响我们展示自己并感知自己的身份。我们的微笑和独特的牙科特征(例如疾病系统)可以成为个人商标。技术限制,时间限制或缺乏专业知识可能会导致更多通用的牙科修复体。对刻板印象,“完美”微笑或依赖通用牙科设计的愿望可以消除个性化的牙科身份,从而使结果变得不那么真实和独特。预制的义齿牙齿具有较低的尺寸,形状和阴影的选择有限的模仿自然凹痕的潜力,很少有技术人员和临床医生能够掌握完全个性化假肢牙齿的艺术。然而,大多数人都喜欢模仿其自然牙科特征的修复,以维持约翰·贝斯福德(John Besford)所说的“假肢隐私”,这有助于他们隐藏自己的牙科工作并保留“牙科身份”,使他们能够继续保持自己的状态和感觉。1
1 简介 神经和神经解剖损伤和疾病影响着全世界许多人,并经常导致运动障碍和无法独立完成日常任务,例如交流、伸手和抓握。经历过脊髓损伤 (SCI)、肌萎缩侧索硬化症或中风等神经损伤的人可以通过皮质假肢系统实现部分功能恢复。皮质假肢是一种末端执行器设备,它通过脑机接口 (BCI) 接收动作命令以执行所需位置,该接口记录皮质活动并提取(即解码)与该预期功能相关的信息。末端执行器的范围可以从虚拟打字通信系统到机械臂和手或通过功能性电刺激 (FES) 重新激活的人的肢体。BCI 技术的侵入性、时间和空间记录分辨率以及记录信号的类型各不相同。非侵入性脑成像技术,例如脑电图 (EEG)、脑磁图 (MEG) 和功能