随着空间数据流量的不断增加,空间光通信受到越来越多的关注,作为持续开发高速光学空间网络努力的一部分,尼康和JAXA一直在开发用于调制连续波信号的单横模10 W保偏Er/Yb共掺光纤(EYDF)放大器。我们已经完成了工程模型(EM)的开发,并计划在2024年作为国际空间站光通信系统的一部分演示该放大器。EM放大器具有三级反向泵浦结构,带有抗辐射的EYDF。它还包括泵浦激光二极管和功率监控光电二极管以避免寄生激光,这两者都已被证实具有足够的抗辐射能力,以及控制驱动电路。整体尺寸为300毫米×380毫米×76毫米,重6.3公斤。在标准温度和压力条件(STP:室温,1 个大气压)下,当信号输入为 -3 dBm 时,EM 放大器在总泵浦功率为 34 W 时实现了 10 W 的光输出功率。总电插效率达到 10.1%。在 STP 下,放大器在 10 W 下实现了 2000 小时的运行时间。我们进行了机械振动测试和工作热真空测试,以确保放大器作为太空组件的可靠性。在工作温度范围的上限和下限 ± 0 和 + 50 °C 下,输出功率和偏振消光比 (PER) 分别为 > 10 W 和 > 16 dB,而放大增益或 PER 没有任何下降。
手术切除。3然而,在更晚期疾病的患者中,辅助治疗被证明可以提高生存率。1 - 3在更晚期的肿瘤 - 节点 - 纳特氏症(TNM)阶段(例如TNM阶段III),复发,更具体地说,局部复发(LR)在确定不利的患者预后中起着重要作用。4标准治疗后有LR风险的III期CRC患者的能力为创建更多个性化的护理并有助于避免过度治疗患者的机会。为实现这一目标,预后生物标志物的策展主要集中在分子和遗传指标上。5 - 9近年来,已经出现了各种商业测试套件,以预测II和III期CRC患者(例如Oncotypedx,Coloprint,Coloprint,Cologuideex和Cologuidepro)的远处复发风险。但是,它们的次优准性和/或高昂的成本继续推动寻找替代预后标记的搜索。8,9例如,有越来越多的证据表明,在肿瘤胶原蛋白(肿瘤微环境的关键成分)(TME)的生长模式中存在有价值的预后信息。10 - 13称为脱糖反应(DR),已显示结缔组织的这种生长和结构重塑与5年无复发生存率和LR相关。14 - 17 Dr使用了基质成熟度的三类分类(未成熟,中间和成熟)。然而,鉴于其评估的定性和主观性质,博士并未目睹主要是由于观察者间的可变性而广泛的临床采用。光学技术允许通过各种模式来量化DR和胶原蛋白评估,以供肿瘤,心脏病学和牙科等领域的应用。18当前的黄金标准,第二谐波一代是特定于胶原蛋白的,但其高成本,冗长的成像时间,适度的视野和整体复杂性限制了其用于研究应用程序的使用。19,20个类似考虑的限制技术,例如扫描电子微拷贝和光学相干断层扫描(不包括眼科)。18 - 21更实用的染色技术,例如梅森的三色和picrosirius红色,优先结合胶原蛋白可以轻松地使用当前的病理显微镜来实现。22然而,对加法染色,费用,(in)与当前组织学工作流程,可重现性,定量和评分系统的信息内容的兼容性的担忧阻止了这些染色方法是对组织学部门的常规补充。22,23另外,极化光微拷贝(PLM)提供了一种更简单的方法,具有获得适合从未染色组织样品定量的高对比度图像的能力。24 PLM解决了许多上述问题,因此已应用于乳房,宫颈,前列腺,大脑和结肠罐中。25更具体地说,一种称为Mueller矩阵(MM)极化法的PLM技术已越来越多地与机器学习(ML)算法结合在一起,以将不足的生物学现象与其偏振特性直接相关,以鉴定与预后相关的参数。26 - 31
由于进行脑部 MRI 扫描时,需要平躺在坚硬的表面上,头部不能移动,因此,任何可以增加舒适度(且不干扰实际扫描)的个人选择都可以让扫描体验更加愉快。穿宽松舒适的衣服是个不错的选择。气温往往偏凉;因此,轻薄的衣物尤其实用。您应避免穿有金属纽扣或配饰的衣服。请避免在进行 MRI 扫描前喝咖啡。
早期的量子算法主要基于两种算法,Grover 搜索算法 [1] 和量子傅里叶变换 (QFT) [2, 3]。量子相位估计算法 (PEA) [2] 是 QFT 最重要的应用之一,也是许多其他量子算法的关键,例如量子计数算法 [4] 和 Shor 整数分解算法 [3]。基于 PEA 的寻序子过程被认为是 Shor 算法指数级加速的源泉。虽然 PEA 是在 20 多年前提出的,但它仍然是近年来的研究热点 [5, 6, 7]。相位估计还引发了一个更广泛的主题,即幅度估计 [8, 9, 10, 11, 12, 13],包括最大似然幅度估计 [10]、迭代幅度估计 [12] 和变分幅度估计 [13]。此外,迭代相位估计算法 (IPEA) [14, 15, 16] 是 PEA 的一种更适合 NISQ (噪声-中间尺度量子) 的变体。在一定的 ϕ 选择策略下,IPEA 与 PEA [14] 完全相同,因此本文不再赘述。相位估计和振幅估计在量子化学 [17, 18, 19] 和机器学习 [20, 21] 等众多领域都有广泛的应用。给定一个执行幺正变换 U 的量子电路,以及一个本征态 | ψ ⟩
在地面试验j7,8,91和飞行试验[lO,ll]中,高压太阳能电池阵列上出现了许多电弧现象。迄今为止,唯一的理论假设来自文献[112]。在这项研究中,有人提出,每个互连器上都有一层薄薄的绝缘污染物。这种污染物可能是由于暴露在空气中而产生的,也可能是在制造过程中产生的。来自空间等离子体的离子被互连器上的负电位吸引。这些离子积聚在表面层,导致层中形成电场。随着层继续充电,内部场变得足够大,足以导致电子发射到空间等离子体中。这种电子流导致层中随后加热和电离。这就是所谓的放电。在本文中,我们集中研究了低地球轨道负偏压太阳能电池阵列的行为,并对观察到的电弧提出了一种新的解释。有人提出,实验观察到的预击穿电流导致中性气体分子从太阳能电池盖玻片的侧面解吸。这些分子在互连线上积聚,并在表面气体层内发生电弧。推导出电压阈值的表达式,并研究了其与气体和几何特性的关系。电压阈值与等离子体密度无关,而与太阳能电池互连连接的几何结构密切相关。第 2 节回顾了实验工作,并描述了低地球轨道的等离子体和中性环境。第 3 节开发了击穿模型并获得了击穿阈值。第 4 节讨论了气体和几何参数的关系以及实验数据在该理论中的应用。最后,在最后一节中,提出了一些实验测试来阐明理论模型。
摘要:我们介绍了一项称为部分脱钩的任务,其中两分量子状态通过两个子系统之一的单一操作转换,然后受量子通道的作用。我们假设子系统被分解为直接的和产物形式,该形式通常出现在量子信息理论的背景下。统一是从分解下具有简单形式的一组单位中随机选择的。该任务的目标是使最终状态成为统一的典型选择,接近单位的平均最终状态。我们考虑一种单次场景,并在两种状态之间平均距离上得出上和下限。边界仅以涉及初始状态,通道和分解的量子状态的平滑条件熵表示。因此,我们提供了单发脱钩定理的概括。获得的结果将导致量子信息理论和基本物理学中的分离方法进一步发展。
N. 佩雷拉 1,2# , S. 贡萨尔维斯 1,2,3# , JC 巴博萨 1 , R. 贡萨尔维斯 4 , CR 图比奥 5 , JL
融合细丝制造(FFF)或融合沉积建模(FDM)是多种领域中广泛使用的增材制造技术。然而,空隙,层之间的粘结差,而FDM Pa-Rameter通常会影响FDM打印的物体,从而改变其强度。研究人员已经研究了用于FDM打印的碳纳米管(CNT)复合材料,以提高其特征。本文提出了一个用于预测机械性能的CIENT三级计算模型,以及用于制备CNT融合的昀碗哀叹的独特淬火过程。通过广泛的参数分析揭示了FDM过程参数在机械性能上的ince。与纯ABS相比,注入CNT的复合材料表现出更好的键合和模量。实验研究表明,对于ABS和ABS-CNT而言,层高度的增加分别使弹性模量分别恶化了21.03%和27.92%。在pure ABS中,In ll密度分别从100%增加到75%和50%,将模量增加49.3%和69.6%。分别在0 - 0 0和0 - 90 0方向上打印的零件,分别为纯ABS和纳米复合材料发现了2.11%和1.7%的降低。计算结果与实验性昀碗nding非常吻合,在0.1 mm和0.2 mm的层高度的差异从10.15%到5.5%不等。对于其他参数(例如栅格方向),0 - 0 0和0 - 90 0的差分别为5.3%和6.9%。计算结果与实验结果一致,使其成为优化FDM打印和利用CNT以提高零件性能的有用工具。
摘要:对从南干区和卡纳塔克邦过渡带收集的根际和非裂圈土壤进行了研究。分析了这些土壤的微生物种群和酶活性。红色沙质壤土是该区域中发现的主要土壤类型。在过渡区的草际,微生物种群最高,在南方干燥区与凉鞋根际相当。细菌种群更多地在与草根际相当的凉鞋根际中。百分比的菌根定殖在凉鞋根际中最高。但是,在两种情况下,草中的定植与凉鞋相当。菌根孢子种群在凉鞋根圈中更多,在非河流圈区域中最少。碱性磷化酶活性遵循南方干燥区土壤的趋势相同的趋势,而在过渡区的情况下,这种根源的草的活性或多或少相似。