背景:误诊、乱收费、排队、诊所等待时间长等是全球医疗行业长期存在的现象。这些因素可能导致患者对临床医生误诊的焦虑。然而,随着大数据在生物医学和医疗保健界的使用日益增长,人工智能 (Al) 诊断技术的性能正在提高,可以帮助避免医疗实践错误,包括在当前 COVID-19 的情况下。目的:本研究旨在在中国 COVID-19 疫情的背景下,从人工智能诊断与临床医生的不同角度可视化和衡量患者的异质偏好。我们还旨在说明离散选择实验 (DCE) 潜在类别的不同决策因素,以及人工智能技术在 SARS-CoV-2 大流行期间及未来判断和管理中的应用前景。方法:DCE 方法是本文应用的主要分析方法。我们假设了诊断方法、门诊等候时间、诊断时间、准确率、诊断后随访、诊断费用等不同维度的属性,并形成问卷。利用 DCE 问卷收集的数据,应用 Sawtooth 软件对数据集构建了广义多项逻辑 (GMNL) 模型、混合逻辑模型和潜在类别模型。此外,我们计算了变量的系数、标准误差、P 值和优势比 (OR),并形成效用报告以呈现属性的重要性和加权百分比。结果:无论临床医生的描述如何,共有 55.8% 的受访者 (767 人中的 428 人) 选择了 AI 诊断。在 GMNL 模型中,我们发现人们最喜欢 100% 的准确率 (OR 4.548, 95% CI 4.048-5.110, P <.001)。对于潜在类别模型,最容易接受的模型由 3 个潜在类别的受访者组成。影响最大、百分比权重最高的属性是诊断的准确性(总体为 39.29%)和费用(总体为 21.69%),尤其是对诊断“准确性”属性的偏好,该属性在各个类别中保持不变。对于第 1 类和第 3 类,人们更喜欢 AI + 临床医生的方法(第 1 类:OR 1.247,95% CI 1.036-1.463,P <.001;第 3 类:OR 1.958,95% CI
摘要:目的:技术举措现已融入广泛的商业领域。本文的目的是探讨人工智能系统通过顾客偏好和行业基准的中介对企业家决策的可能影响。设计/方法/方法:这是一项非实证的文献综述和概念模型的开发。在主要学术数据库(如 Emerald 在线期刊、Taylor and Francis 在线期刊、JSTOR 在线期刊、Elsevier 在线期刊、IEEE Xplore 和开放存取期刊目录 (DOAJ))中搜索了专注于人工智能 (AI)、企业家决策、顾客偏好、行业基准和员工参与度的论文。总共有 25 篇文章符合预定义标准并被使用。结果:该研究提出,人工智能系统可以从企业家的角度促进更好的决策。此外,研究表明,员工作为利益相关者,可以通过参与来调节人工智能系统与企业家更好决策之间的关系。此外,研究表明,客户偏好和行业基准可以调节人工智能系统与企业家更好的决策之间的关系。研究的局限性/含义:本研究假设 ICT 环境完美,以保证人工智能系统的顺利运行。然而,情况可能并非总是如此。这项研究没有考虑企业家在 ICT 使用和采用方面的个人倾向。实际意义:本研究提出,企业家决策在人工智能系统的环境中得到丰富,并辅以客户偏好、行业基准和员工参与。这一发现为企业家提供了一种可能的技术工具,以便做出更好的决策,凸显了人工智能系统提供的无限选择。社会影响:在商业决策过程中引入人工智能会带来许多社会问题,这些问题与机器对人类和社会的影响有关。本文提出了如何在不破坏社会的情况下使用这项新技术。原创性/价值:这个概念框架是企业家发展的宝贵组织范围。此外,这项研究通过人工智能系统为企业家发展做出了宝贵的贡献。
从演示中学习是用户教机器人的常见方法,但它很容易出现虚假的特征相关性。最近的工作构建了状态抽象,即具有与任务相关特征的视觉表示,从语言作为执行更具概括性学习的方式。但是,这些抽象还取决于用户对任务中重要的内容的偏好,而单独使用语言可能很难描述或不可证明。我们如何构建抽象来捕获这些潜在偏好?我们观察到人类的行为如何揭示了他们如何看待世界。我们的关键见解是,人类行为的变化告诉我们,人们对人类看待世界的偏好有所不同,即他们的状态抽象。在这项工作中,我们建议使用语言模型(LMS)查询直接知道行为发生变化的偏好。在我们的框架中,我们以两种方式使用LM:FRST,给定对任务的文字描述和状态之间行为变化的知识,我们向LM查询可能的隐藏偏好;其次,考虑到最可能的偏好,我们询问LM以构建状态抽象。在这个框架中,LM还可以直接询问人类自己的估计。我们证明了我们的框架在模拟实验,用户研究以及执行移动操作任务的实际点机器人中构建有效的偏好条件抽象的能力。
人工智能(AI)在过去几十年中取得了进步,以至于能够产生创意作品,其中一个领域是音乐。先前的研究表明,人类倾向于对AI艺术表现出负面的偏见,尽管与人类是否能够准确区分AI艺术家与人类艺术家的结果存在对比的结果。先前的研究表明,在5巨头人格特征,年龄人口统计学,创造性的身份和对AI技术的熟悉程度中具有不同特征的人对AI的视觉艺术作品有所不同。但是,没有研究在AI生成的音乐领域调查了这一现象。因此,本研究旨在检查音乐组成领域中的个人特征与AI感知之间的关系。我们假设年轻人将能够比老一辈更好地区分AI-和人类生成的音乐。此外,我们假设在开放和愉悦的人方面得分很高的人对AI生成的音乐的负面态度较小,而在神经质和尽职尽责的人中,对AI生成音乐的负面态度更高。在对在线调查做出回应的31个参与者的样本中,我们发现了感知到的作曲家身份与参与者的偏好之间的显着相关性,而我们没有发现个人特征与参与者的准确性和偏好之间的任何显着相关性。讨论了对我们对AI生成的艺术品的理解的影响。
大型语言模型(LLMS)通过利用其语言理解和文本生成功能来显示机器人应用,尤其是任务计划的重要潜力。然而,在诸如家用机器人技术之类的应用中,这些模型的个性化仍然存在着重要的差距。例如,LLM计划可能会发现执行需要个性化的任务,例如决定基于特定的家庭喜好将杯子放在厨房中的位置。我们介绍了LLM-Persyalize,这是一个新颖的框架,旨在个性化家庭机器人的LLM计划。llm-persyalize使用llm计划在多房间,部分观察的家庭环境中执行迭代计划,并利用从本地观察结果动态构建的场景图。要将LLM计划者个性化对用户偏好,我们的优化管道整合了模仿学习和加强自我训练。我们评估了LLM-个性化家政人员,这是一个具有挑战性的现实世界3D基准,用于家庭重排,表明,成功率比现有的LLM计划者增长了30%以上,这表明与人类偏好相符。
印度卡纳塔克邦贝拉加维Visvesvaraya Technological University的研究学者管理研究系。印度卡纳塔克邦贝拉加维Visvesvaraya Technological University的研究学者管理研究系。
与SLMS相比,LLMS与人类偏好相比表现出Supe-050 Rior对齐(OpenAI,051 2024; Georgiev et al。,2024)。因此,ex-052 iSting Works llms作为教师提炼053偏好知识(Bai等人,054 2022; Cui等。,2023; Tunstall等。,2024; Wang 055等。,2024; Yuan等。,2024)。所有这些作品056模型在LLM中的模型偏好知识比较了成对响应。例如,Bai 058等。(2022)使用对059培训奖励模型的教师注释的响应,该奖励模型通过加强学习指导学生060。同样,Tunstall 061等。(2024)采用教师模型以偏爱-062 ence注释,但使用蒸馏的直接优先优化 - 064(Rafailov等人)直接优化了学生063模型(Rafailov等人。,2023)在注释数据集上。065然而,这些066“教师通知者”提供的监督信号采用订购067
摘要。随着技术创新和政策支持的增加,新的能源车市场正在迅速发展。本研究调查了市场教育对电动汽车(EV)和内燃机(ICE)车辆之间消费者偏好的影响。它调查了市场教育的影响,包括广告,专业论坛和社交媒体平台对消费者决策。该研究表明,市场教育大大增强了消费者对EV技术,建立品牌信任并刺激购买意图的理解。名人认可和社交媒体运动在短期内特别有效,而专业论坛则加深了消费者对电动汽车技术的信任。市场教育在强调电动汽车的长期成本效益方面也发挥了关键作用,有助于克服高初始成本的障碍。该研究结束时,建议汽车制造商和政策制定者利用市场教育来解决消费者对电动汽车的担忧并促进电动汽车市场的发展。
从人类反馈中学习(RLHF)已成为使大语言模型(LLM)与人类偏好保持一致的标准方法,从而使LLM可以在各种任务中表现出显着的能力。现有方法通过在单个决策(转弯)级别上模拟偏好,限制其在需要计划或多转交互以实现长期目标的设置中的功能。在本文中,我们通过开发新的增强学习方法(RL)来解决这个问题,从两次完整的多转交谈之间的偏好反馈中。在表格设置中,我们为一般多转变的基于多转变的RL问题提供了一种新型的基于镜下降的策略优化算法,并证明了其与NASH平衡的收敛。为了评估绩效,我们创建了一个新的环境,教育对话,教师代理人指导学生学习一个随机主题,并证明我们算法的深度RL变体优于RLHF Baselines。最后,我们表明,在具有明确奖励的环境中,我们的算法恢复了与基于奖励的RL基线相同的性能,尽管仅依靠较弱的偏好信号。