摘要。海面温度 (SST) 在分析和评估天气和生物系统的动态方面起着重要作用。它有各种应用,例如天气预报或沿海活动规划。一方面,用于预测 SST 的标准物理方法使用基于 Navier-Stokes 方程的耦合海洋-大气预测系统。这些模型依赖于多个物理假设,并且不能最佳地利用数据中可用的信息。另一方面,尽管有大量数据可用,但直接应用机器学习方法并不总能产生具有竞争力的最新结果。另一种方法是将这两种方法结合起来:这就是数据模型耦合。本文的目的是在另一个领域使用模型。该模型基于数据模型耦合方法来模拟和预测 SST。我们首先介绍原始模型。然后,描述修改后的模型,最后得到一些数值结果。
该过程的计算成本可能很高,特别是对于高维问题以及需要非结构化网格时,例如为了解释局部不规则行为。然后可以使用各种数值方法(例如有限元 (FEM)、有限差分 (FDM) 或有限体积 (FVM))求解该离散方案。但即使是这些方法对于大型复杂问题也可能效率低下。例如,描述流体运动的 Navier-Stokes 方程的解可能需要超级计算机上数百万小时的 CPU 或 GPU 时间。另一个例子是泊松方程,它是工程学中最重要的偏微分方程之一,包括热传导、引力和电动力学。在高维环境中对其进行数值求解只能使用迭代方法,但迭代方法通常不能很好地随着维度而扩展和/或在处理边界条件或生成离散化网格时需要专业知识。神经网络 (NN) 非常适合解决此类复杂 PDE,并且已在工程和应用数学的各个领域用于复杂回归和图像到图像的转换任务。科学计算界早在 20 世纪 80 年代就已将其应用于 PDE 求解 [ 20 ],但近年来人们对它的兴趣呈爆炸式增长,部分原因是计算技术的显著进步以及此类网络公式的改进,例如在 [ 4 , 21 , 32 ] 中详细介绍和强调过。量子计算是一种变革性的新范式,它利用了微观物理尺度上的量子现象。虽然设计难度显著增加,但量子计算机可以运行专门的算法,这些算法的扩展性比传统计算机更好,有时甚至呈指数级增长。量子计算机由量子位组成,与传统数字计算机中的位不同,量子位基于量子物理的两个关键原理存储和处理数据:量子叠加和量子纠缠。它们通常会出现特定的误差,即量子误差,这些误差与其量子比特的量子性质有关。即使目前还没有足够复杂度的量子计算机,我们也显然需要了解我们希望在其上执行哪些任务,并设计方法来减轻量子误差的影响 [ 29 ]。量子神经网络形成了一类新的机器学习网络,利用叠加和纠缠等量子力学原理,有可能处理复杂问题和 / 或高维空间。量子神经网络的建议架构包括 [ 7 , 11 , 34 ],并表明它可能具有潜在的优势,包括更快的训练速度。对量子机器学习的初步理论研究表明,量子网络可以产生更易于训练的模型 [ 1 ]。这与使用机器学习解决 PDE 问题尤其相关,因为产生更有利损失景观的技术可以大大提高这些模型的性能 [13,18]。在目前的研究中,我们提出了一种制定量子神经网络的新方法,将一些经典的机器学习技术转化为量子设置,并在特定的 PDE(Heat、Poisson 和 HJB 方程)背景下开发复杂性分析。这提供了一个框架来展示量子神经网络作为 PDE 求解器的潜力和多功能性。本文结构如下:第 2 部分介绍 PINN 算法,并回顾经典和量子网络的基础知识。在第 3 部分中,我们介绍了一种新颖的
量子场论 (QFT) 起源于 20 世纪 40 和 50 年代为基本粒子定义相对论量子力学理论的尝试。如今,这个术语用于描述从基本粒子到凝聚态物理等各种物理现象的计算框架,该框架基于路径积分,即广义函数空间上的测度。此类测度的数学构造和分析也称为建设性 QFT。本工作联合会将首先介绍一些背景材料,然后探讨近年来基于随机偏微分方程 (SPDE) 视角的一些进展,对于这些方程,QFT 测度是平稳测度。物理学家 Parisi 和 Wu [PW81] 首次观察到 QFT 和 SPDE 之间的联系,这种联系被称为随机量化。从随机量化程序中导出的这些 SPDE 的解理论和解的性质的研究促进了奇异 SPDE 解理论的实质性进展,尤其是过去十年中规则结构理论 [Hai14b] 和准受控分布理论 [GIP15] 的发明。此外,随机量化使我们能够引入更多工具(包括 PDE 和随机分析)来研究 QFT。本 Arbeitsgemeinschaft 的重点将以 QFT 模型(例如 Φ 4 和 Yang-Mills 模型)为例,讨论随机量化和 SPDE 方法及其在这些模型中的应用。其他模型(例如费米子模型、sine-Gordon 和指数相互作用)也将在一定程度上得到讨论。我们将介绍正则结构和准受控分布的核心思想、结果和应用,以及与这些模型相对应的 SPDE 的局部解和全局解的构造,并使用 PDE 方法研究这些 QFT 的一些定性行为,以及与相应的格点或统计物理模型的联系。我们还将讨论 QFT 的一些其他主题,例如威尔逊重正化群、对数索伯列夫不等式及其含义,以及这些主题与 SPDE 之间的各种联系。
在这项工作中,我们基于傅里叶分析开发了一种高效的函数和微分算子表示。利用这种表示,我们创建了一种变分混合量子算法,用于求解静态、薛定谔型、哈密顿偏微分方程 (PDE),使用空间高效的变分电路,包括问题的对称性以及全局和基于梯度的优化器。我们使用该算法通过计算三个 PDE(即一维量子谐振子和 transmon 和 flux 量子比特)中的基态来对表示技术的性能进行基准测试,研究它们在理想和近期量子计算机中的表现。利用这里开发的傅里叶方法,我们仅使用三到四个量子比特就获得了 10-4 –10-5 阶的低保真度,证明了量子计算机中信息的高度压缩。实际保真度受到实际计算机中成本函数评估的噪声和误差的限制,但也可以通过错误缓解技术来提高。
让我们考虑一个求解函数 f(x, t) 的偏微分方程,其中 x 是 ad 维向量。为了在量子设备上存储和操作 PDE 的解,第一步通常是离散化空间:我们创建 ad 维格,并将位于格中位置 xi 的节点写为 fi (t) := f(xi, t)。因此,问题简化为求解 f(t) 中的常微分方程 (ODE),并且大多数求解 ODE 的量子算法都可以应用于我们的新问题。然而,在求解 PDE 时,需要在复杂性分析中考虑离散化过程中引入的误差。通过引入解的精度和 f 的维数之间的依赖关系,它会改变可以获得的加速性质,正如我们将在第 IV 部分中看到的那样。
摘要。海面温度 (SST) 在分析和评估天气和生物系统的动态方面起着重要作用。它有各种应用,例如天气预报或沿海活动规划。一方面,用于预测 SST 的标准物理方法使用基于 Navier-Stokes 方程的耦合海洋-大气预测系统。这些模型依赖于多个物理假设,并且不能最佳地利用数据中可用的信息。另一方面,尽管有大量数据可用,但直接应用机器学习方法并不总能产生具有竞争力的最新结果。另一种方法是将这两种方法结合起来:这就是数据模型耦合。本文的目的是在另一个领域使用模型。该模型基于数据模型耦合方法来模拟和预测 SST。我们首先介绍原始模型。然后,描述修改后的模型,最后得到一些数值结果。