概述:视神经损伤是视力丧失的最重要原因之一。因此,对视神经纤维损害程度的精确和细致评估对于有效的治疗和康复至关重要。实验室制造的扫描式偏振敏感的光学相干断层扫描(PS-OCT)系统,并用极化 - 维持光纤成分组装,用于捕获受伤发生前后猪眼的光神经的成像。PS-OCT成像技术允许获取视神经组织的微结构细节和极化特性。通过PS-OCT系统中的探测光的极化状态阐明了视神经组织的双重特征。使用Stokes参数Q,U和V可视化它们。发现V横截面图像在表示视神经的双向特性方面表现出了较高的功能。通过应用阈值分割方法,V横截面图像被用来将高折射区域与非胚芽或低射流区域分开。表现出高双折射的神经纤维组织对应于横截面图像中的蓝色区域,这与背景颜色形成鲜明对比。在视神经损伤之前,V横截面图像中的蓝色区域占据了最大的区域。受伤后,V横截面图像中蓝色区域的面积突然减少。但是,在2小时的标记处,蓝色区域的面积再次减少。随着伤害后的持续时间的进展,细胞和组织降解的坏死导致散射效应的增加,从而导致横截面结构图像中信号的逐渐加强。在伤害后0.5和1.0小时拍摄的V横截面图像中,蓝色区域有部分反弹。The evolving pattern of the average thickness and area of the nerve fibers corresponding to the blue regions in the V cross-sectional images followed a consistent trend, presenting an inverted “ N ” shape, which appeared to correlate with nerve injury, repair, and degeneration processes, which strongly indicates that the information regarding the changes in fiber structure and polarization characteristics of the optic nerve obtained through PS-OCT is critically important for assessing the视神经损伤的严重程度。这种成像技术揭示的纤维结构的进行性变化为早期诊断和治疗性干预提供了至关重要的参考数据。
*gdliu@xtu.edu.cn 摘要:偏振光在通信波段具有多种潜在应用,包括光通信、偏振成像、量子发射和量子通信。然而,优化偏振控制需要在动态可调性、材料和效率等领域不断改进。在本文中,我们提出了一种基于硼墨烯的结构,它能够通过局域表面等离子体(LSP)的相干激发将光通信波段的线性偏振光转换为任意偏振光。此外,可以通过将第二个硼墨烯阵列放置在第一个硼墨烯阵列的顶部并使它们的晶面相对旋转90°来实现双层硼墨烯结构。通过独立控制双层硼墨烯的载流子浓度可以切换反射光的偏振态的旋转方向。最后利用偶极子源实现偏振光的发射,其发射速率比自由空间中的发射速率高两个数量级,并且可以通过操纵载流子浓度来动态控制偏振态。我们的研究简单紧凑,在偏振器、偏振探测器和量子发射器领域具有潜在的应用。1.引言 偏振是电磁波的本征特性之一,它表示电磁矢量在空间中方向改变的性质[1],包括三种偏振态:线偏振光(LPL)、椭圆偏振光(EPL)和圆偏振光(CPL)。在通信和传感领域,与LPL相比,CPL使光能够抵抗环境变化,并且忽略了散射和衍射的影响[2-4]。直接产生CPL比较困难,但可以通过调节两个正交电场分量之间的电磁振幅和相位,将LPL转换成CPL[5]。超材料可以灵活地操控光的散射振幅、相位和偏振,理论上可以将光的波前塑造成任何所需的形状。偏振转换的早期研究表明,由贵金属组成的超材料
如图 3 所示,测量了松散缠绕的 MC 光纤。这是使用标称 20 ns 脉冲宽度的 POffiRI 测量的,这给出了 125 ns 的有效脉冲宽度(见附录 A)。发射和接收的极化状态通过穿过相同的线性偏振器而对齐。在线性偏振器之前连接了一根 1.5kIn 引线光纤,然后是被测光纤。轨迹的 POffiR 部分显示峰峰值幅度仅为大约 4 dB,这表明轨迹未完全解析。图 7 显示了第 5 节的可调 POffiR 的轨迹。这是使用 40 ns 的有效脉冲宽度和与发射极化状态正交的接收极化状态测量的,这给出了 7 到 9 dB 之间的峰峰值幅度,更好地重新定义了极化 Ji!~l。--
OZ Optics 方便且经济高效的电动旋转器能够精确控制单个光学平台或具有多个光路的多平台系统的偏振状态。这些旋转器可以通过单个紧凑型控制单元进行控制和同步,以按顺序或并行执行精确旋转。控制单元与处理器和触摸屏一起集成在一个手掌大小的外壳中,通过直观的图形用户界面 (GUI) 控制多个电机。无论系统复杂程度如何,都可以通过可定制的 GUI 实现和启用即插即用功能,以满足苛刻的应用要求。
1 加拿大国家研究委员会,加拿大安大略省渥太华 K1A 0R6 2 多伦多大学物理系,加拿大安大略省多伦多 M5S 1A7 3 瓜达拉哈拉大学物理系,墨西哥哈利斯科州瓜达拉哈拉 44420 4 湖首大学物理系,加拿大安大略省桑德贝 P7B 5E1 5 马克斯普朗克光物理研究所,德国埃尔朗根 91058 6 俄罗斯科学院应用物理研究所,俄罗斯下诺夫哥罗德 603950 7 德克萨斯 A&M 大学量子科学与工程研究所,美国德克萨斯州学院城 77843 8 德克萨斯 A&M 大学物理与天文系,美国德克萨斯州学院城 77843 9 德克萨斯 A&M 大学生物与农业工程系, Texas 77843, USA 10 Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 马德里, 西班牙 * 通讯作者: lsanchez@fis.ucm.es
激光器现在是一项普遍的技术,具有许多熟悉的应用程序,包括沟通,材料处理,3D扫描,印刷,医疗应用等等。激光辐射的产生需要热力学平衡的不平衡,以至于只有高度不寻常的天体物理量表现象才能在自然界中产生激光[1]。所有其他激光均经过设计和使用。使用的目的是驱动军事愿望检测激光的意图。激光器的军事应用包括范围查找,目标名称,激光耀眼和导弹控制[2]。军方感兴趣的大多数激光是脉冲激光器。时间分辨率和高瞬时亮度使它们非常适合在范围检测器和目标标记等应用中在许多公里的范围内运行。已经开发出激光华纳接收器(LWRS)来检测这些激光器所带来的威胁[3] [4],并允许辐射的平台启动由感知的威胁确定的适当的对策。在过去的几年中,连续波(CW)可见的激光二极管的优势产生了更广泛的危害 - 所谓的激光指针。手持式可见激光器具有几个瓦的功率,可容纳几百美元,波长不断扩展。这些激光被证明是一种威胁,当他们接近降落时,它们朝向飞机,并有1500多个报道称,去年英国和美国令人眼花azz乱的飞行员。CW激光器是激光检测世界中的特定挑战。常规LWR在检测这些激光器方面表现不佳,因为它们依赖于使用脉冲激光器观察到的亮度的快速时间变化。Wang [5]将激光检测分为三类 - 相干识别,散射识别和频谱识别。这些是基于观察到的类别而不是区分特征。Benton [6]采用了基于歧视技术 - 成像,光谱和连贯性的分类方法。前两个类别本质上都是
多光谱和/或极化成像是下一代红外摄像机不可避免的要求。1–9与单色/全球成像相比,狭窄和多光谱的成像可以提供更丰富的对象信息,从而确定对象的绝对温度,并降低相机对大气条件的敏感性。几个相邻光谱通道的组合有助于在复杂的环境中检测到埋藏的物体。5人工对象(例如金属和玻璃)通常具有与天然物体的极化特性不同的。因此,获取极化信息有可能识别某些对象,被认为是提高识别效率并减少错误警报的重要手段。2–4传统的多光谱和极化技术基于单个光谱焦平面阵列,光谱仪和/或极化器的掺入,这些光谱平面阵列,光谱仪和/或极化器通常需要高成本的机械扫描仪器和额外的空间。这些附加
5。Yetisen,又名等,光子水凝胶传感器。生物技术进步,2016年。34(3):p。 250-271。6。Zhang,D。等人,从设计到刺激反应性水凝胶应变传感器的应用。材料杂志化学杂志b,2020。8(16):p。 3171-3191。7。ionov,L。,基于水凝胶的执行器:可能性和局限性。今天的材料,2014年。17(10):p。 494-503。8。Cheng,F.-M.,H.-X. Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Cheng,F.-M.,H.-X.Chen和H.-D.李,水凝胶执行器的最新进展。 材料杂志化学杂志b,2021。 9(7):p。 1762-1780。 9。 Hu,L。等人,利用刺激反应性聚合物的动力。 高级功能材料,2020年。 30(2):p。 1903471。 10。 li,J。和D.J. Mooney,设计用于控制药物输送的水凝胶。 自然评论材料,2016年。 1(12):p。 1-17。 11。 Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。 Molecular Pharmaceutics,2019年。 17(2):p。 373-391。 12。 SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。 药物交付,2016年。 23(3):p。 748-770。 13。 Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。 材料科学与工程:R:报告,2015年。 93:p。 1-49。 14。 刘,Z.,W。Toh和T.Y. 15。Chen和H.-D.李,水凝胶执行器的最新进展。材料杂志化学杂志b,2021。9(7):p。 1762-1780。9。Hu,L。等人,利用刺激反应性聚合物的动力。高级功能材料,2020年。30(2):p。 1903471。10。li,J。和D.J.Mooney,设计用于控制药物输送的水凝胶。自然评论材料,2016年。1(12):p。 1-17。11。Sun,Z。等,基于水凝胶的受控药物输送用于癌症治疗:评论。Molecular Pharmaceutics,2019年。17(2):p。 373-391。12。SOOD,N。等人,药物输送和组织工程中的刺激性反应性水凝胶。药物交付,2016年。23(3):p。 748-770。13。Koetting,M.C。等人,刺激反应性水凝胶:理论,现代进步和应用。材料科学与工程:R:报告,2015年。93:p。 1-49。14。刘,Z.,W。Toh和T.Y. 15。刘,Z.,W。Toh和T.Y.15。ng,软材料力学的进步:综述了水凝胶的大变形行为。国际应用机制杂志,2015年。7(05):p。 1530001。Huang,R。等人,智能材料组成型模型的最新进展 - 水凝胶和成形记忆聚合物。国际应用机制杂志,2020年。12(02):p。 2050014。16。Quesada-Pérez,M。等,凝胶肿胀理论:古典形式主义和最近的方法。软件,2011年。7(22):p。 10536-10547。17。Fennell,E。和J.M.Huyghe,化学响应式水凝胶变形力学:评论。分子,2019年。24(19):p。 3521。18。Ganji,F.,F.S。 vasheghani和F.E. vasheghani,水凝胶肿胀的理论描述:评论。 2010。 19。 Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。 Acta Mechanica Sinica,2021。 37:p。 367-386。 20。 Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。 材料科学与工程:C,2021。 127:p。 112208。 21。 Wu,S。等人,对水凝胶体积转变的建模研究。 大分子理论与模拟,2004年。 13(1):p。 13-29。 22。 Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。 传感器,2008。 8(1):p。 561-581。 23。 水,2020年。 24。Ganji,F.,F.S。vasheghani和F.E.vasheghani,水凝胶肿胀的理论描述:评论。2010。19。Lei,J。等人,用于机械行为研究的水凝胶网络模型的最新进展。Acta Mechanica Sinica,2021。37:p。 367-386。20。Zhan,Y。等人,在多功能抗固定聚合物水凝胶方面的进步。材料科学与工程:C,2021。127:p。 112208。21。Wu,S。等人,对水凝胶体积转变的建模研究。大分子理论与模拟,2004年。13(1):p。 13-29。22。Richter,A。等人,基于水凝胶的pH传感器和微传感器的综述。传感器,2008。8(1):p。 561-581。23。水,2020年。24。Wang,J。等人,作为正向渗透过程中的抽吸溶液的最新发展和未来挑战。12(3):p。 692。Cai,S。和Z. Suo,理想弹性凝胶的状态方程。epl(Europhysics Letters),2012年。97(3):p。 34009。25。li,J。等人,理想弹性凝胶的状态方程的实验确定。软件,2012年。8(31):p。 8121-8128。26。subramani,R。等人,肿胀对聚丙烯酰胺水凝胶弹性特性的影响。材料中的边界,2020年。7:p。 212。27。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。 V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。 固体力学和物理学杂志,2022年。 168:p。 105017。 28。 Xu,S。等人,在脱水下同时加强和软化。 科学进步,2023年。 9(1):p。 EADE3240。Kim,J。,T。Yin和Z. Suo,聚丙烯酰胺水凝胶。V.聚合物网络中的某些链带负载,但所有链都会导致肿胀。固体力学和物理学杂志,2022年。168:p。 105017。28。Xu,S。等人,在脱水下同时加强和软化。科学进步,2023年。9(1):p。 EADE3240。
OZ Optics 提供纠缠光子源,在马赫-曾德尔干涉仪内实现一对周期性极化晶体。偏振纠缠光子对通过 2 型自发参量下转换 (SPDC) 产生。部署了多个偏振位移器 (PD) 以将光子对分离到两个输出端口,安装在前面板上,如照片所示。光子对的中心波长为 810 nm,带宽为几纳米。每个光源都配备波长稳定的泵浦激光器、可变光衰减器和温度控制器,以微调相位匹配参数,实现最佳效率。