3.1 干涉法 5 3.1.1 系统配置 6 3.1.2 干涉技术的能力和局限性 7 3.1.3 分辨率 7 3.1.4 精度 7 3.1.5 总结 7 3.2 固定分析仪 8 3.2.1 系统配置 9 3.2.2 固定分析仪方法的能力和局限性 9 3.2.3 分辨率 10 3.2.4 精度 10 3.2.5 总结 11 3.3 斯托克斯参数评估 11 3.3.1 斯托克斯参数评估方法的能力和局限性 13 3.3.2 分辨率 14 3.3.3 精度 14 3.3.4 总结 14 3.4 相移技术 15 3.4.1 调制相移 15 3.4.2差分相移法 16 3.4.3 相移技术的能力和局限性 17 3.4.4 分辨率 18 3.4.5 精度 18 3.4.6 总结 18
图 2 显示了超透镜在中红外照明下的操作性能。如上所述,法线入射的 TE 和 TM 光束将偏转约 15° 到表面法线两侧的各自焦平面。APL 开发了一个简单的程序来表征超透镜在两个窄中红外光谱区域(4.26 和 4.67 µm)内的偏振选择性,这使得使用单个中红外探测器就可以收集与四种输入偏振/样品方向排列组合相关的图像。首先,在入射光束中使用线性偏振器,样品的方向如图 2 所示,用一系列 TE 和 TM 输入照射超透镜。TM 光被偏转至探测器,而 TE 响应则远离 TM 焦平面。收集完这两幅图像后,样品绕光源法线旋转 180°,TE 和 TM 焦平面也随之旋转。然后用 TE 和 TM 序列的偏振中红外光照射样品,在探测器平面上生成最后两幅图像。
量子控制和测量是同一枚硬币的两面。要影响动态图,必须将精心设计的时间相关控制场应用于感兴趣的系统。要读出量子态,必须将有关系统的信息传输到探测场。我们研究了这种双重作用的一个特定示例,即通过与非共振光学探针的光移相互作用对原子自旋进行量子控制和测量。通过引入不可约张量分解,我们确定了光场的斯托克斯矢量与原子自旋态矩的耦合。这表明偏振光谱如何用于随时间演变的原子可观测量的连续弱测量。同时,探测场引起的状态相关光移可以驱动自旋的非线性动力学,并可用于在原子上产生任意的幺正变换。我们重新审视主方程的推导,以便在非线性动力学和光子散射的情况下给出自旋动力学的统一描述。基于这种形式,我们回顾了量子控制的应用,包括状态到状态映射的设计,以及通过对动态控制集合进行连续弱测量进行量子态重建。2009 Elsevier BV 保留所有权利。
随着空间数据流量的不断增加,空间光通信受到越来越多的关注,作为持续开发高速光学空间网络努力的一部分,尼康和JAXA一直在开发用于调制连续波信号的单横模10 W保偏Er/Yb共掺光纤(EYDF)放大器。我们已经完成了工程模型(EM)的开发,并计划在2024年作为国际空间站光通信系统的一部分演示该放大器。EM放大器具有三级反向泵浦结构,带有抗辐射的EYDF。它还包括泵浦激光二极管和功率监控光电二极管以避免寄生激光,这两者都已被证实具有足够的抗辐射能力,以及控制驱动电路。整体尺寸为300毫米×380毫米×76毫米,重6.3公斤。在标准温度和压力条件(STP:室温,1 个大气压)下,当信号输入为 -3 dBm 时,EM 放大器在总泵浦功率为 34 W 时实现了 10 W 的光输出功率。总电插效率达到 10.1%。在 STP 下,放大器在 10 W 下实现了 2000 小时的运行时间。我们进行了机械振动测试和工作热真空测试,以确保放大器作为太空组件的可靠性。在工作温度范围的上限和下限 ± 0 和 + 50 °C 下,输出功率和偏振消光比 (PER) 分别为 > 10 W 和 > 16 dB,而放大增益或 PER 没有任何下降。
光电器件的发展需要在新材料体系和新器件机制上不断突破,需求从信号强度和响应度的检测转向对偏振态信息灵敏度的探索。二维材料是一个丰富的家族,具有多样化的物理和电子特性,可用于偏振器件,包括各向异性材料、谷电子材料和其他混合异质结构。在本文中,我们首先回顾了二维材料中偏振光相关的物理机制,然后详细描述了光学和光电特性,包括拉曼位移、光吸收和光发射以及功能光电器件。最后,对未来的发展和挑战进行了评论。大量的二维材料及其异质结构为偏振相关的科学发现和光电器件应用提供了希望。
在光学量子计算和通信框架中,主要目标是构建接收节点,使用单个固定量子位对传入光子实施条件操作。特别是,对可扩展节点的追求推动了腔增强自旋光子接口与固态发射器的发展。然而,一个重要的挑战仍然是,以确定性的方式产生稳定、可控、自旋相关的光子状态。在这里,我们使用电接触柱状腔,嵌入单个 InGaAs 量子点,以展示单个电子自旋对反射光子引起的巨大极化旋转。引入了一种完整的层析成像方法来推断在存在自旋和电荷波动的情况下,由特定自旋状态决定的输出极化斯托克斯矢量。我们通过实验接近庞加莱球中条件旋转π2、π和π2的偏振态,外推保真度分别为(97±1)%、(84±7)%和(90±8)%。我们发现,增强的光物质耦合,加上有限的腔双折射和降低的光谱波动,可以针对庞加莱球中的大多数条件旋转,同时控制经度和纬度。这种偏振控制可能对使自旋光子接口适应各种量子信息配置和协议至关重要。
众所周知,光混合器 [1] 是光通信相干接收器中的关键组件。它可以采用多种技术构建,包括光纤、硅光子学和偏振光学 [2-5]。扩展可用带宽以匹配光电探测器的整个范围可以实现新的应用,例如相干光谱 [6]、光纤传感 [7]、光检测和测距 (LiDAR) [8],以及生物医学传感和成像 [9],例如光学相干断层扫描 (OCT) [10]。在迄今为止报道的制备的混合器中,最大的带宽为 120 nm,约为 1550 nm,这是因为如果不进行主动调整就难以获得精确的 90° 相移 [11-13]。多平面光转换 (MPLC) 是一种多输入、多输出光束重塑技术,由一系列由自由空间传播分隔的相位掩模组成 [14, 15],因此可以产生具有 2 个输入和 4 个输出的光混合器。图 1 显示了由 14 个光滑相位掩模板和一个金镜组成的多反射腔中形成的光学混合器的示意图。输入由微透镜准直的单模光纤阵列馈送,输出是四束高斯光束,这些光束与类似的光纤准直器阵列模式匹配,或者可以在自由空间光电探测器上检测到。
量子纠缠是实现光量子信息处理 (QIP) 不可或缺的资源 [1-7]。传统上,通过利用符合波粒二象性的光的两个不相容方面之一来实现纠缠,两类方法同时发展起来。因此,这些发展导致了信息编码的两个不同方向,即使用有限维的离散变量 (DV) 状态(如光子数、时间箱和光偏振)[1-4] 或无限维希尔伯特空间的连续变量 (CV) 状态(如场正交分量)[5-7]。在实践中,这两种编码都展示了各自的优势,但也暴露了各自的弱点。由于不太担心光子丢失,涉及单光子的 DV 协议通常享有几乎单位保真度,但依赖于概率实现和高效的单光子探测器。相比之下,CV 替代方案使用电磁场的正交分量,具有明确的状态鉴别、无条件操作和完美的同差检测效率,但由于与真空耦合,存在光子损失和固有的低状态保真度。最近,人们做出了显著的努力 [8-22],利用这两种方法的优点来克服固有的个体局限性。在统一的混合架构中集成 DV 和 CV 技术方面取得的进展表明,我们能够分配和互连光学 DV 和 CV 量子态(或量子比特)。我们可以设想一个异构量子网络,要求在两种编码之间进行匹配的信息传输。因此,这些混合技术为实现可扩展的 QIP 和量子通信提供了新的思路。虽然将 DV 工具箱与 CV 框架相结合的努力早在二十年前就已开始用于生成非高斯状态,但它
离子阱系统具有较长的相干时间和较强的离子间相互作用,可实现高保真度的双量子比特门,是一种很有前途的量子信息处理方式 [1]。目前,大多数实现都由复杂的自由空间光学系统组成,其较大的尺寸以及对振动和漂移的敏感性会限制离子阵列的保真度和可寻址性,从而阻碍向大量量子比特的扩展。最近,基于集成光子学的设备和系统已被证明是解决这些挑战的一种途径 [2,3]。到目前为止,这些先前的集成演示仅限于使用单一线性偏振光(特别是横向电场 (TE))进行操作,该偏振光名义上与离子阱芯片表面平行。然而,不同的偏振对于实现先进的离子阱系统的许多操作至关重要 [4],这引起了人们对开发偏振多样化发射器的兴趣 [5,6]。例如,基于集成光子学的架构涉及 TE 和横磁 (TM) 偏振光(如图 1a 中的配置),对于实现先进的离子冷却方案必不可少,这种方案可在几种非简并陷阱振动模式下提供亚多普勒温度,例如偏振梯度冷却和电磁诱导透明冷却 [4]。在本文中,我们设计并通过实验演示了一对集成的 TE 和 TM 发射光栅,工作波长为 422 nm,对应于 88 Sr + 离子的 5 2 S 1/2 到 5 2 P 1/2 跃迁,这是离子控制的关键跃迁。我们实施了一种自定义的优化设计算法,以实现发射单向聚焦光束的双层、切趾和曲面光栅,实验测量的光斑尺寸为 TE 光栅 7.6 μm × 4.3 μm,TM 光栅 5.0 μm × 3.6 μm,目标离子高度距芯片表面 50 μm。据我们所知,这项工作代表了用于捕获离子系统的集成 TM 发射光栅的首次开发,因此,它为基于集成光子学的捕获离子量子系统涉及多个极化的高级操作奠定了基础。