和核磁共振 (NMR) [7] 已经开发出来。但总的来说,这些检测方法仅限于小型动态组合文库 (DCL) 大小,使用相对大量的蛋白质 (> 10 μM) 并且操作繁琐。报道了一种鉴定蛋白酶抑制剂的方法,该方法涉及醛和亲核试剂的可逆原位反应,监测荧光报告底物水解的抑制情况。[8] 荧光偏振 (FP) 分析已与片段连接结合使用以优化蛋白质结合:通过与亲核片段的原位反应延伸荧光素标记的底物类似物肽与 C 端醛,以增强蛋白质结合亲和力。[9] 在这里,我们报告如何通过在单个孔中原位合成和筛选抑制剂 (ISISS) 来有效发现适合体内使用的人类酶抑制剂。 ISISS 方法将双正交反应与基于 FP 的靶标结合分析相结合,能够对大量片段组合进行时间无关的检测。ISISS 方法操作简单,可在 384 孔板高通量模式下进行(图 1)。我们将基于 FP 的 ISISS 策略应用于发现人类脯氨酰羟化酶 2 (PHD2) 的体内活性抑制剂,PHD2 是治疗慢性肾病 (CKD) 相关贫血的靶标。ISISS 方法采用荧光素标记探针,该探针由异硫氰酸荧光素 (FITC) 和强效 PHD2 抑制剂连接而成(探针结构如图 S2 所示),并通过 FP 分析监测低浓度人类 PHD2 (20 nM) 与竞争性配体的结合(图 S2)。 [10] PHD 催化作用对促红细胞生成素的生物合成有负面调节作用,因此 PHD 抑制剂可促进血红蛋白 (Hb) 的产生和红细胞生成。[11] PHD2 抑制剂有可能彻底改变贫血的治疗,首创的 PHD2 抑制剂罗沙司他现已获准用于临床。[12] 在这里,我们报告了 ISISS 方法如何有效地识别与罗沙司他具有相似效力的 PHD2 抑制剂,包括在体内环境中。根据 PHD2 活性位点的结构特征(图 2A)和双正交酰腙形式,我们能够识别出与罗沙司他具有相似效力的 PHD2 抑制剂。
摘要:光学活性自旋系统与具有高协同性的光子腔耦合可产生强光-物质相互作用,这是量子网络的关键成分。然而,获得用于量子信息处理的高协同性通常需要使用光子晶体腔,而光子晶体腔从自由空间的光学访问能力较差,尤其是自旋相干控制所需的圆偏振光。在这里,我们展示了协同性高达 8 的 InAs/GaAs 量子点与制造的靶心腔的耦合,该腔提供近乎简并和高斯偏振模式以实现高效的光学访问。我们观察到量子点的自发辐射寿命短至 80 ps(约 15 个 Purcell 增强),从腔体反射的光的透明度约为 80%。利用诱导透明度进行光子切换,同时相干控制量子点自旋,可以为建立量子网络的持续努力做出贡献。
3D 偏振光成像 (3D-PLI) 方法测量组织学脑切片的双折射以确定神经纤维 (髓鞘轴突) 的空间走向。虽然可以高精度地确定平面内纤维方向,但计算平面外纤维倾角更具挑战性,因为它们是从双折射信号的幅度中得出的,而双折射信号的幅度取决于神经纤维的数量。提高精度的一种可能性是考虑平均透射光强度 (透射加权)。当前程序需要费力地手动调整参数和解剖知识。在这里,我们引入了一种自动化、优化的纤维倾角计算,从而可以更快、更可重复地确定 3D-PLI 中的纤维方向。根据髓鞘的程度,该算法使用不同的模型 (透射加权、不加权或线性组合),从而可以考虑区域特定行为。由于该算法是并行的和 GPU 优化的,因此可以应用于大型数据集。此外,它仅使用标准 3D-PLI 测量的图像(无倾斜),因此可以应用于以前测量的现有数据集。此功能已在黑长尾猴和大鼠脑的未染色冠状和矢状组织切片上得到验证。
1 天津市成像与传感微电子技术重点实验室,天津大学微电子学院,天津 300072 2 天津大学电气与信息工程学院,天津 300072 3 东南大学信息科学与工程学院,毫米波国家重点实验室,南京 210096 4 西安电子科技大学电子工程学院,高速电路设计与电磁兼容教育部重点实验室,西安 710071 5 华为技术有限公司,上海 518129 6 伦敦大学学院电子与电气工程系,伦敦 WC1E7JE,英国 7 浙江大学信息与电子工程学院,浙江省微纳电子器件与智能系统重点实验室,杭州 310027
摘要 高维希尔伯特空间以及控制光子多个自由度并使其纠缠的能力使得各种量子信息处理应用能够实现新的量子协议。在这里,我们提出了一种方案,使用在路径(位置)空间和频域中实现偏振控制量子行走所需的操作元件来生成和控制偏振-路径-频率纠缠。超纠缠态表现为使用干涉装置的受控动力学,其中半波片、分束器和频率移位器(例如基于电光效应的移位器)分别用于操纵偏振、路径和频率自由度。重点是利用偏振来影响频率和位置空间中特定值的移动。计算子空间之间的负性以证明三个自由度之间纠缠的可控性,并使用去偏振通道模拟噪声对纠缠的影响。报告的进展以及使用光量子态实现量子行走的实验演示使量子行走成为一种生成超纠缠态的实用方法。
据我们所知,这是在 LNOI 平台上首次演示高阶模式通带滤波器。我们的模式滤波器体积小、损耗低、MER 高、功能可扩展,与其他材料平台上报道的器件相比,是一种极具吸引力的选择(详情请参阅支持信息 S5)。此外,我们的器件还可以使用微电子行业开发的成熟的 CMOS 兼容蚀刻工艺来制造,同时保留了基于 LNOI 平台探索高速电光器件和高效光学非线性器件的能力。
1 加拿大国家研究委员会,加拿大安大略省渥太华 K1A 0R6 2 多伦多大学物理系,加拿大安大略省多伦多 M5S 1A7 3 瓜达拉哈拉大学物理系,墨西哥哈利斯科州瓜达拉哈拉 44420 4 湖首大学物理系,加拿大安大略省桑德贝 P7B 5E1 5 马克斯普朗克光物理研究所,德国埃尔朗根 91058 6 俄罗斯科学院应用物理研究所,俄罗斯下诺夫哥罗德 603950 7 德克萨斯 A&M 大学量子科学与工程研究所,美国德克萨斯州学院城 77843 8 德克萨斯 A&M 大学物理与天文系,美国德克萨斯州学院城 77843 9 德克萨斯 A&M 大学生物与农业工程系, Texas 77843, USA 10 Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 马德里, 西班牙 * 通讯作者: lsanchez@fis.ucm.es
量子纠缠是实现光量子信息处理 (QIP) 不可或缺的资源 [1-7]。传统上,通过利用符合波粒二象性的光的两个不相容方面之一来实现纠缠,两类方法同时发展起来。因此,这些发展导致了信息编码的两个不同方向,即使用有限维的离散变量 (DV) 状态(如光子数、时间箱和光偏振)[1-4] 或无限维希尔伯特空间的连续变量 (CV) 状态(如场正交分量)[5-7]。在实践中,这两种编码都展示了各自的优势,但也暴露了各自的弱点。由于不太担心光子丢失,涉及单光子的 DV 协议通常享有几乎单位保真度,但依赖于概率实现和高效的单光子探测器。相比之下,CV 替代方案使用电磁场的正交分量,具有明确的状态鉴别、无条件操作和完美的同差检测效率,但由于与真空耦合,存在光子损失和固有的低状态保真度。最近,人们做出了显著的努力 [8-22],利用这两种方法的优点来克服固有的个体局限性。在统一的混合架构中集成 DV 和 CV 技术方面取得的进展表明,我们能够分配和互连光学 DV 和 CV 量子态(或量子比特)。我们可以设想一个异构量子网络,要求在两种编码之间进行匹配的信息传输。因此,这些混合技术为实现可扩展的 QIP 和量子通信提供了新的思路。虽然将 DV 工具箱与 CV 框架相结合的努力早在二十年前就已开始用于生成非高斯状态,但它
摘要 提出了一种偏振不敏感的石墨烯基中红外光调制器,由SiO 2 /Ge 23 Sb 7 S 70 组成,其中嵌入了两层石墨烯,采用半椭圆布局,以支持具有相同吸收率的横磁 (TM) 和横电 (TE) 偏振模式。偏振无关调制器的关键性能指标是偏振灵敏度损耗 (PSL)。我们器件的波导只支持基本的 TE 和 TM 模式,两种模式之间的 PSL < 0.24 dB。该模型可以提供大于 16 dB 的消光比 (ER) 和小于 1 dB 的插入损耗。工作光谱范围为 2 至 2.4 μm,光学带宽为 400 nm。根据理论计算,3 dB 调制带宽高达 136 GHz。关键词:硫属玻璃,石墨烯,中红外,光调制器,偏振不敏感