有两个重要数量是从关于平均值的时刻计算得出的,它们在统计工作中特别重要。这两个量为β1和β2,并用以下表达式及其衍生物γ1和γ2表示。
在本文中,我们提出了定时偏序 (TPO) 模型来指定工作流程安排,尤其是用于对制造流程进行建模。TPO 集成了工作流程中事件的偏序,指定“先发生”关系,并使用时钟上的保护和重置指定时间约束——这是从定时自动机规范中借鉴的想法。TPO 自然使我们能够捕获事件顺序以及一类受限制但有用的时间关系。接下来,我们考虑从工作流程日志中挖掘 TPO 安排的问题,其中包括事件及其时间戳。我们展示了制定 TPO 和图着色问题之间的关系,并提出了一种具有正确性保证的 TPO 学习算法。我们在合成数据集上展示了我们的方法,其中包括两个受飞机调头的实际应用启发的数据集和 Overcooked 电脑游戏的游戏视频。我们的 TPO 挖掘算法可以在几秒钟内从数千个数据点推断出涉及数百个事件的 TPO。我们表明,由此产生的 TPO 为工作流的依赖关系和时间约束提供了有用的见解。
在此期间,GMC 就医师助理监管进行的磋商仅产生了微小的变化,这些变化无法平息批评者的声音,因为这些变化未能反映出磋商中发现的异议程度 (doi:10.1136/bmj.q2757)。11 Iqbal Singh 在与 Martin Forde 进行独立审查后认为,GMC 至少在平等、多样性和包容性方面取得了一些进展 (doi:10.1136/bmj.q2694)。12 13 但面对可能席卷 GMC 的医师助理风暴,这些都毫无意义。RCP 没有听从,将其权力视为理所当然,并受到了沉重打击。GMC 正处于同样的波涛汹涌之中。
偏序集或偏序集合的空间高效数据结构是研究较为深入的领域。已知具有 n 个元素的偏序集合可以用 n 2 / 4 + o ( n 2 ) 位表示[30],也可以用 (1 + ϵ ) n log n + 2 nk + o ( nk ) 位表示[19],其中 k 是偏序集合的宽度。在本文中,我们通过考虑偏序集合元素的拓扑标记,使后一种数据结构占用 2 n ( k − 1) + o ( nk ) 位。同样考虑到拓扑标记,我们提出了一种新的数据结构,它可以更快地计算偏序集合的传递约简图上的查询,尽管传递闭包图上的查询计算速度较慢。此外,我们为拓扑标记偏序集合提出了一种替代数据结构,尽管它使用 3 nk − 2 n + o ( nk ) 位空间,但可以更快地计算这两个查询。此外,我们从 BlockDAG(区块链的更具可扩展性的版本)的应用程序的角度讨论了这些数据结构的优势。
我们调查了差异隐私中无偏见的高维平均估计器。我们考虑了差异的私有机制,其预期输出等于输入数据集的均值,对于从r d中的固定有限域K绘制的每个数据集。一种经典的私人平均估计方法是计算真实的均值,并添加无偏见但可能相关的高斯噪声。在本文的第一部分中,我们研究给定域K的高斯噪声机理可实现的最佳误差,当在某些p≥2中测量误差范围时。我们提供算法,以在适当的假设下计算给定k的高斯噪声的最佳协方差,并证明最佳误差的许多不错的几何特性。这些结果将来自域K的分解机制理论推广到对称和有限的(或等效地,对称的多面体)到任意界面的域。在本文的第二部分中,我们表明,高斯噪声机制在所有私人无偏见的平均估计机制中都在非常强烈的意义上达到了几乎最佳的误差。特别是,对于每个输入数据集,满足集中差异隐私的公正平均估计器至少与最佳高斯噪声机制一样多。我们将此结果扩展到局部差异隐私,并近似差异隐私,但是对于后者,对于数据集或相邻数据集,下限的误差较低的界限是必要的,则必须放松。
使用概念模型(Cessi,1994; Cimatoribus等,2012)和完全占地的海洋气候模型(De Niet等,2007; Toom et al。,2012; Mulder等,2021)。这些研究的重要结果之一是(在这些模型中)的存在与可观察的数量有关(Rahmstorf,1996),现在通常称为AMOC稳定性(或制度)指标。该指标在文献中具有许多不同的符号,例如m ov(de Vries and Weber,2005)或F ov(Hawkins等,2011)。在这里,我们将遵循Weijer等人。(2019)并使用f ovs(f ovn)作为AMOC在大西洋盆地的35°S(60°N)的南部(北部)边界上携带的淡水运输(Dijkstra,2007; Huisman et al。,2010; Liu et al。,2017)。可用的观察结果(Bryden等,2011)表明,当今的AMOC将淡水从大西洋出口(F OVS <0)。众所周知,F ovs忽略了一些相关的过程(Gent,2018),但是如果人们接受f ovs是适当的指标,则AMOC基于其观察到的价值(Weijer等,2019)。
在有机p-缀合的寡聚物中,未配对电子的远距离离域化是实现分子晶体管中高电荷载体迁移率的重要要求。我们已经研究了一系列B,Meso,B-边缘粘合剂的卟啉低聚物的自由基阳离子,由CW-EPR,1 h和14 N Endor,Hyscore和Vis-Nir-Mir Simals支持,由CW-EPR,1 h和14 n N Endor,Hyscore和Vis-Nir-Mir样品组合,由CW-EPR,1 h和14 n N NOM组成。结果表明,在十多个卟啉单元中,自由基阳离子的连贯离域化,这对应于有效的连贯长度> 8.5 nm。我们发现自由基自旋密度的分布非常不均匀,并且随着定位长度的增加(在50 K时高达Tm≈4µs),相位记忆时间增加。这项研究为设计分子电子和旋转材料的设计开辟了新的途径。
摘要 同侧偏盲是因中风、肿瘤、脑外伤和其他罕见原因引起的视野缺损。由于视觉系统受损,会出现侧向忽视,导致难以检测双眼视野一侧的物体,这使患者在日常活动中面临潜在危险,尤其是在户外交通中。已经开发出不同的光学辅助设备,如菲涅尔棱镜,通过增加受影响半视野的感知来帮助这些患者。这种棱镜矫正可以出现在各种配置中,例如:轭式棱镜、单眼和双眼扇形棱镜,底座朝向患侧。治疗这些患者的另一种选择是基于刺激受影响半视野的视觉训练。 关键词:同侧偏盲、视野丧失、棱镜矫正
摘要:人工智能的引入改善了几乎每个部门、行业和人类生活各个部分的运作。人工智能的使用在司法部、组织招聘、警察面部识别和学校招生中至关重要。在各个领域引入人工智能算法的目的是减少决策中的人为偏见。尽管取得了进展,但人们担心人工智能算法也存在偏见。这种说法背后的主要原因是人类开发人员负责算法使用的训练数据。有些领域中的偏见问题直接影响人类生活,并可能对人造成身体或情感上的伤害。一些例子是大学录取、招聘、法院的司法管理、公共福利系统、警察、公共安全和医疗保健。在上述任何领域中,开发过程很有可能有意或无意地在人工智能算法中引入偏见。本文提供了有关人工智能偏见的背景知识以及解决问题的可能解决方案。
本文探讨了认知偏见对企业内战略决策和市场竞争力的普遍影响。认知偏见是与理性判断的系统偏差,严重影响了信息的感知和决策。这种偏见会扭曲战略计划和运营效率,从而导致次优的结果并降低市场竞争力。分析的重点是几种常见的认知偏见,包括自我服务的偏见,使个人责任偏差;基于初始信息影响财务预测和战略决策的锚定偏见;以及沉没的成本谬误,过去的投资不适当地影响了当前的决策,损害了替代方案,潜在的有利可图的途径。探索扩展到这些偏见如何误导市场分析和战略计划,尤其是在扩张和进入新市场时。通过全面的文献综述和定性分析,本文研究了商业环境中认知偏见的表现及其对市场竞争力的影响。认为,认识和减轻这些偏见对于旨在改善决策过程并保持动态市场中竞争优势的公司至关重要。讨论了缓解认知偏见的策略,包括培养一种批判性思维的文化,促进团队内的各种观点,以及通过制止和余额实施结构化的决策过程。认知偏见代表了与规范判断和理性决策的系统偏差。本文强调了战略规划中持续学习和适应性的必要性,以更加与市场现实保持一致并增强整体业务弹性。关键字:认知偏见,战略决策,市场竞争力,锚定偏见,沉没成本谬误,自我服务偏见,业务策略。引言本文深入研究了认知偏见对业务战略和市场竞争力的深刻影响。这些偏见塑造了个人如何看待和解释信息,通常会导致决定与客观理性不同的决定。因此,认知偏见会大大影响组织成果和在市场上的竞争定位。通过各种机制来表现出业务的认知偏见,每种机制都可能使理性的决策和战略计划脱轨。例如,自我服务的偏见使个人将成功归因于自己的努力和失败的外部因素。这些偏见会缩减客观评估和从商业活动中学习,可能阻碍组织的增长和适应(Bazerman&Moore,2009)。