• AEC-Q100 qualified for automotive applications – Temperature grade 1: –40°C to 125°C, T A • Functional Safety-Capable – Documentation available to aid functional safety system design • High continuous current capability: 80A RMS • Robust reinforced isolation • High accuracy – Sensitivity error: ±0.4% – Sensitivity thermal drift: ±40ppm/°C – Sensitivity lifetime drift: ±0.2% - 偏移误差:±0.7MV - 偏移热漂移:±10μV/°C - 偏移寿命漂移:±12mA - 非线性:±0.2%•±0.2%•对外部磁场的高度免疫力•快速响应•信号宽度 - 信号带宽 - 信号带宽 - 250kHz - 250kHz - 响应时间:1μs - 供应范围:110范围••BB•BIR•BIR•BID•BID•BID•BID•3VIR:3V•3 vir•3 v. 3 v. 3 v. 3 v. 3 v. 3 v. 3 v. 3 v. 3 v。单向电流传感•多种灵敏度选项: - 从25mv/a到200mv/a•安全相关认证(计划) - UL 1577组件识别计划 - IEC/CB 62368-1
输入 通道数 4,同时采样 配置 全桥、半桥或四分之一桥 分辨率 18 位 输入范围†见下表。 采样率 100 kSamples/sec(最大板速率 400 kS/s) 精度 积分非线性±0.0015% 偏移误差@25°C,G=2 0.0005% 典型值 增益误差@25°C,G=2 0.003% 典型值 偏移漂移/°C 2ppm 典型值 / 10ppm 最大 增益漂移/°Cz 2ppm 典型值 / 10ppm 最大 整体误差<250µV 桥接电阻120、350 或 1000 Ohm 抗混叠滤波器* 自动,72 dB 最小抑制 输入阻抗10 MegOhm,最小 激励输出 通道数每通道两个(P+、P-),可独立编程 输出电压0 至±10 Vdc(每个输出); 20Vdc 差分跨度 分辨率 16 位 输出驱动电流 50 mA,最大值 输出误差 ± 5 mV,最大值,测量精度与模拟输入相同 分流校准**(见下页注释) 分流范围 6.7 k 至 170k Ohm(拉力或压力)内部。还提供两个用于用户提供的分流电阻的连接。 分流分辨率 ~1.1 kOhm 分流读回精度** 返回读数的 ±0.02% 自动桥零位/平衡 零位/平衡范围 19 位分辨率 @ ±10V(自动零位 1 mV 最大值) 通用规格 电气隔离 350 Vrms,通道到通道和通道到底盘 工作温度 经测试 -40 °C 至 +85 °C 振动 IEC 60068-2-6 IEC 60068-2-64
摘要目的:提出一种使用深度学习框架直接从正弦图中检测和分类颅内出血 (ICH) 的自动化方法。该方法旨在通过消除耗时的重建步骤并最大限度地减少计算机断层扫描 (CT) 重建过程中可能出现的潜在噪音和伪影来克服传统诊断的局限性。方法:本研究提出了一种使用深度学习框架从正弦图中检测和分类 ICH 的两阶段自动化方法。该框架的第一阶段是强度变换正弦图合成器,它合成与强度变换 CT 图像等效的正弦图。第二阶段包括级联卷积神经网络-循环神经网络 (CNN-RNN) 模型,该模型可从合成的正弦图中检测和分类出血。 CNN 模块从每个输入的正弦图中提取高级特征,而 RNN 模块提供正弦图中邻域区域的空间相关性。在一个包含 8652 例患者的大型样本的公开 RSNA 数据集上对所提出的方法进行了评估。结果:结果表明,与 ResNext-101、Inception-v3 和 Vision Transformer 等最新方法相比,所提出的方法在患者准确率上显着提高了 27%。此外,与基于 CT 图像的方法相比,基于正弦图的方法对噪声和偏移误差的鲁棒性更高。还对所提出的模型进行了多标签分类分析,以从给定的正弦图中确定出血类型。还使用激活图检查了所提出模型的学习模式的可解释性。结论:所提出的基于正弦图的方法可以准确、高效地诊断 ICH,无需耗时的重建步骤,并有可能克服基于 CT 图像的方法的局限性。结果显示,使用基于正弦图的方法检测出血的效果良好,进一步的研究可以探索该方法在临床环境中的潜力。
注释: 1.B 级温度范围为 -40 ℃ ~+85 ℃。 2.这些数据是按最初设计的产品发布的。 3.一次校准实际上是一次转换,因此这些误差就是表 1 和表 3 所示转换噪声的阶数。这 适用于在期望的温度下校准后。 4.任何温度条件下的重新校准将会除去这些漂移误差。 5.正满标度误差包括零标度误差 ( Zero-Scale Error )(单极性偏移误差或双极性零误 差),且既适用于单极性输入范围又适用于双极性输入范围。 6.满标度漂移包括零标度漂移 (单极性偏移漂移或双极性零漂移)且适用于单极性及 双极性输入范围。 7.增益误差不包括零标度误差,它被计算为满标度误差——对单极性范围为单极性偏移 误差,而对双极性范围为满标度误差——双极性零误差。 8.增益误差漂移不包括单极性偏移漂移和单极性零漂移。当只完成了零标度校准时,增 益误差实际上是器件的漂移量。 9.共模电压范围:模拟输入电压不超过 V DD +30mV ,不低于 GND-30mV 。电压低于 GND-200mV 时,器件功能有效,但在高温时漏电流将增加。 10.这里给出的 AIN ( + )端的模拟输入电压范围,对 TM7706 而言是指 COMMON 输入 端。输入模拟电压不应超过 V DD +30mV, 不应低于 GND-30mV 。 GND-200mV 的输入 电压也可采用,但高温时漏电流将增加。 11.VREF=REF IN ( + )- REF IN ( - )。 12.只有当加载一个 CMOS 负载时,这些逻辑输出电平才适用于 MCLK OUT 。 13.+25 ℃时测试样品,以保证一致性。 14.校准后,如果模拟输入超过正满标度 , 转换器将输出全 1, 如果模拟输入低于负满标度, 将输出全 0 。 15.在模拟输入端所加校准电压的极限不应超过 V DD +30mV 或负于 GND - 30mV 。 16.当用晶体或陶瓷谐振器作为器件的时钟源时 (通过 MCLK 引脚 ), V DD 电流和功耗 随晶体和谐振器的类型而变化 (见“时钟和振荡器电路”部分)。 17.在等待模式下,外部的主时钟继续运行, 5V 电压时等待电流增加到 150 μ A , 3V 电 压时增加到 75 μ A 。当用晶体或陶瓷谐振器作为器件的时钟源时,内部振荡器在等待 模式下继续运行,电源电流功耗随晶体和谐振器的类型而变化 (参看“等待模式” 一节)。 18.在直流状态测量,适用于选定的通频带。 50Hz 时, PSRR 超过 120dB (滤波器陷波 为 25Hz 或 50Hz )。 60Hz 时, PSRR 超过 120dB (滤波器陷波为 20Hz 或 60Hz )。 19.PSRR 由增益和 V DD 决定,如下: