航天器总质量 最多 200kg 任务数据上行链路 28kbps;下行链路 50kbps(低速率)/480kbps(高速率) 指向知识 0.07 度(1 σ) 指向控制 0.08 度(1 σ) 转动速率 0.5 度/秒(横滚/偏航);1.5 度/秒(俯仰) GPS 精度位置 10m;速度 0.02m/s;时间 50ns(1 σ) 设计寿命 >7 年(500km 轨道);>5 年(1,200km 轨道) 运载火箭 阿丽亚娜空间联盟号、阿丽亚娜 6 号、维珍轨道发射器一号,其他拟议 标称轨道 500-1,500km 圆形极地轨道;可适应高度/倾斜度电池锂离子总线电压22-38V非调节C&DH冗余总线@125kbps(SoCan)和1Mbps(SpaceWire)加密AES 256有效载荷电气和数据处理接口电源线(0.5-5A);热传感器线;SoCan总线;SpaceWire总线1同步(1kHz)线路;1 PPS(1Hz)线路TT&C上行/下行链路频段10Ka遥测频率/8Ka命令频率推进电力(氙气HET)最大Delta-V> 800m / s可靠性(非有效载荷)0.96 @ 5年宽带TT&C /通信选项可选Ka波段任务数据链路(1.6Gbps)带2个可操纵天线(15kg / 40W要求) div>
性能更新率 (Hz) 25 或 100 请参阅订购信息完整准确度数据 (秒) < 90 航向范围 (°) 0 至 360 准确度 (°) ± 2 FAA TSO C6d 测试条件分辨率 (°) 0.1 姿态滚转范围 (°) ± 180 俯仰范围 (°) ± 90 准确度 (°) ± 2.5 FAA TSO C4c 测试条件垂直度 (°) < 1.0 分辨率 (°) 0.1 环境 1 FAA DO-160D 测试条件工作温度 (°C) -40 至 +70 非工作温度 (°C) -55 至 +85 工作振动 (g rms) DO-160D,第 8 部分 S 类,曲线 M; U 类 EMI DO-160D,第 20 节 W 类 DO-160D,第 21 节 M 类 防水/防潮密封外壳 海拔 (ft) 35,000 最大角速率 ( °/秒) 200 滚动、俯仰或偏航 最大加速度范围 (G) 10 电气输入电源电压 (VDC) 12V 或 24V 电气。系统 DO-160D 第 16 节,类别。B 输入功率 (W) < 4 @ 12 VDC 数字输出格式 RS-232 物理尺寸 (英寸) 4.66 x 4.53 x 4.863 不包括安装法兰 (厘米) 11.84 x 11.51 x 12.35 不包括安装法兰 重量 (磅) 3.5 (千克) 1.6 连接器 15 针 Sub-Min DB 公头
摘要:了解自动飞行控制系统的知识可以理解控制飞机飞行的基本问题,并提高其评估通常提出的问题解决方案的能力。有许多飞行任务需要让飞机非常精确地遵循某些特别定义的路径。每当要控制传统飞机时,飞行员都可以控制三个轴中的任意一个或所有轴的旋转速度:俯仰、滚转和偏航。在考虑飞行控制处理中的控制时,需要在飞机上测量航向和压力高度等路径变量。这些近似是线性的,也是充分的;这类系统可以被视为飞行路径控制系统类的成员,并在本文中进行了深入讨论。本文以时域方法为基础,介绍了现代控制理论方法,特别是状态方程的使用,这是一种自然有效的技术,与飞机动力学的数学描述相协调,最完整、最方便地用状态和输出方程来表达。本文还涉及 AFCS 的特定模式,涉及在不同飞行条件下为参考飞机 CHARLIE(一种非常大的四引擎喷气式客机)实施的飞行路径控制系统。SIMULINK 用于实现飞行路径控制系统,因为它们对于形成集成 AFCS 的最外层循环非常重要。关键词:飞机动力学、自动飞行控制系统 (AFCS)、飞行路径控制系统 (FPCS)
Xsens 的 MTi 产品组合目前有 7 个系列产品,功能范围从惯性测量单元 (IMU) 到完全集成的 GPS/INS 解决方案。所有产品都包含 3D 惯性传感器组件(ISA:陀螺仪和加速度计)和 3D 磁力计,并可选配气压计和 GNSS 接收器。MTi 产品系列分为两个系列,即 MTi 10 系列和 MTi 100 系列。MTi 10 系列是 Xsens 的入门级型号,具有强大的精度和有限的 IO 选项范围。100 系列是革命性的新型 MEMS IMU、方向和位置传感器模块,提供前所未有的精度和广泛的 IO 接口。所有 MTi 均采用强大的多处理器核心设计,能够以极低的延迟处理滚动、俯仰和偏航,以及输出经过校准的 3D 线性加速度、转速(陀螺仪)、(地球)磁场和大气压力(仅限 100 系列)数据。MTi-G-700 GPS/INS 还提供 3D 位置和 3D 速度。MTi 接口可直接提供 50 多种不同的输出格式。每种产品的各种输出可在第 4.1 节中找到。本文档介绍了所有 7 种 MTi 的使用、基本通信接口和规格。它们之间的差异已明确标明。从机械和软件接口的角度来看,所有产品都设计为可互换。
摘要 - 本文使用DJI Tello无人机作为自动控制工程领域的互动教学平台提出了动手教学方法。DJI Tello是一款小型商业四轮驱动器无人机,包括一个软件开发套件(SDK),它允许使用包括Python在内的各种编程语言来控制Tello。无人机还配备了大量传感器,这些传感器可在实时收集数据并分析控制输入(例如推力,俯仰,滚动和偏航)的变化如何影响其飞行路径和稳定性。这些功能使Tello成为一个很好的教学工具,用于以一种障碍和实用的方式展示控制概念。本文提供了两个教学应用的例子。第一个示例旨在在实践中说明如何使用传输函数使用系统标识来创建DJI Tello无人机的数学模型。第二个示例旨在说明如何设计比例综合(PI)控制器并在DJI Tello无人机上实现后进行验证。通过这些教学演示,有可能在为学生提供对建模和控制的基础概念方面的提供,同时增强认知学习。还观察到,即使学生没有航空的背景,但使用非典型系统(例如无人机)也引起了他们的好奇心,鼓励他们参与,从而使课堂上的示范更具动态性。关键字:教育平台,示威者,无人机,可视化,学生感知,控制理论。
1,2 航空电子系,JNTUK 卡基纳达科学技术学院 摘要:深入了解自动飞行控制系统的知识可以理解控制飞机飞行的基本问题,并提高其评估通常提出的问题的解决方案的能力。许多飞行任务都要求飞机非常精确地遵循某些专门定义的路径。每当需要控制一架传统飞机时,飞行员可以指挥三个轴中任意一个或所有轴的旋转速度:俯仰、滚转和偏航。在飞行控制处理中考虑对路径变量的控制时,需要测量飞机的航向和气压高度等路径变量。这些近似值是线性的,也是充分的;这类系统可被视为飞行路径控制系统类的成员,本文对此进行了深入讨论。本文以时域方法为基础,介绍了现代控制理论方法,特别是状态方程的使用,这是一种自然有效的技术,与飞机动力学的数学描述相协调,而飞机动力学可以用状态和输出方程最完整、最方便地表达。本文还涉及 AFCS 的特定模式,涉及在不同飞行条件下为参考飞机 CHARLIE(一种非常大的四引擎喷气式客机)实施的飞行路径控制系统。SIMULINK 用于实施飞行路径控制系统,因为它们对于形成集成 AFCS 的最外层循环非常重要。关键词:飞机动力学、自动飞行控制系统 (AFCS)、飞行路径控制系统 (FPCS)
在兰利 14 英尺乘 22 英尺亚音速风洞中测试了一个 1/8 比例的翼内风扇概念模型。这一概念是格鲁曼航空航天公司(现为诺斯罗普格鲁曼公司)考虑为美国陆军开发的设计(定为 755 型)。悬停测试在隧道附近的模型准备区进行。随着风扇推力的变化,距压力仪表地平面的高度、俯仰角和滚转角都会发生变化。在风洞中,随着风扇推力的变化,攻角和侧滑角、距风洞地板的高度和风速都会发生变化。在模型准备区和风洞中,针对几种配置测量了模型上的空气载荷和表面压力。主要的配置变化是改变安装在风扇出口以产生推进力的叶片角度。在悬停测试中,随着模型离地面高度的降低,推力消除法向力在风扇转速恒定的情况下发生了显著变化。最大的变化通常是高度与风扇出口直径之比小于 2.5。通过使用叶片将风扇出口气流偏向外侧,可以显著减少这种变化。在风洞中,对许多叶片角度配置进行了滚转、偏航和升力控制测试。还评估了襟翼偏转和尾翼入射角等其他配置特征。尽管 V 型尾翼增加了静态纵向 s
利用风能产生的电力称为风力发电。风在运动时具有动能。一组风力涡轮机称为风电场。风电场可能由数百台单独的风力涡轮机组成。两台风力涡轮机之间的土地可用于农业。甘肃风电场是世界上最大的风电场,位于中国。风能发电的一般原理是风扇,也称为风力涡轮机。风力发电所涉及的能量转换过程是将风能转化为机械能,然后将机械能转化为发电机中的电能。风力涡轮机放置在一定高度,有支撑物,支撑物称为风塔。当风旋转涡轮叶片时,转子旋转,转子轴连接到发电机轴,利用电磁感应原理产生电能。风力涡轮机的主要部件是带叶片的转子、电磁制动器、机械制动器、变速箱、发电机襟翼或尾翼、轴和偏航控制机构。转子轴连接到高速变速箱。风速没有固定的,风速总是有波动的。为了避免风速波动,变速箱有助于保持发电机的发电量固定。励磁机用于为磁线圈提供所需的励磁。需要使用交流发电机将直流输出转换为交流输出。交流输出在升压变压器的帮助下输送到电力传输或输电网。部分电力用于运行风力涡轮机装置中的附件,如电机、电池和指示灯等。
纳米卫星正引起工业界和政府的极大兴趣,用于执行一系列任务,包括全球船舶监测、全球水体监测、太空分布式射电望远镜和综合气象/精确定位任务。纳米卫星任务大幅增加,从 2003 年的 1 个开始,到 2020 年将超过 1,300 个。执行这些任务是为了获取宝贵的实验数据 [3]。冷气体推进系统因其简单性和可行性而在小型卫星中发挥着理想的作用。它们已被证明是最适合低地球轨道 (LEO) 机动的推进系统。到目前为止,该系统是小型航天器最成熟的技术之一。理想的特性包括设计简单、清洁、安全、坚固、低功耗运行、不给航天器产生净电荷以及宽动态范围。它能够以脉冲或连续方式运行。就硬件复杂性而言,它比脉冲等离子推力器、胶体推力器和场发射电推进推力器要简单得多。在这个系统中,推力是由惰性、无毒推进剂的排出产生的,推进剂可以以液态或气态储存。因此,它消耗的资金、质量和体积都很低。冷气系统主要由推进剂罐、电磁阀、推进器、管道和配件组成。油箱中装有卫星运行所需的姿态控制燃料。如前所述,燃料以液态或气态使用。推进器提供足够的力来维持卫星俯仰、偏航和滚转动力学的平衡[1,5,11]。除此之外,
Lancair 由 Lance Neibauer 于 1984 年创立,现已成为世界上最成功的套件制造商之一。该公司制造了多种套件飞机,包括 Lancair ES 和 Super ES,以及世界上速度最快的活塞驱动飞机 Lancair IV 和 IV-P。Lancair 飞机保持着多项世界速度记录,并在大多数主要越野飞行比赛中夺得冠军。1999 年 7 月,Legacy 2000 作为 Lancair 320/360 的继任者推出。Legacy 提供了额外的乘客和行李空间,并且比之前的 Lancair 360 性能更高。使用 310 马力的 Continental IO-550-N,Legacy 在 8000 英尺的高度可实现超过 276 英里/小时的巡航速度。2001 年 9 月,Lancair International 试飞了涡轮发动机驱动的 Lancair IV-P。Lancair 现在推出了其最新版本的涡轮发动机:Lancair Sentry。这款 Walter 驱动的 Lancair IV 是一款军用风格的双座飞机,带有左侧油门控制装置和后铰链座舱。“这架飞机的性能与现有的 Propjet 模型非常相似,巡航速度几乎达到 400 英里/小时!“这款新的 Lancair 套件不仅能产生与 IV-P Propjet 型号类似的令人热血沸腾的速度,而且还能通过新设计的后铰链顶篷提供更高的偏航稳定性和出色的可视性。有关所有 Lancair 飞机的更多信息,请联系:LANCAIR INTERNATIONAL 2244 Airport Way, Redmond, OR 97756 电话:(541) 923-2244。www.lancair.com