本研究研究了基于自由结合能(δg)的潜在活性预测以及对ARTOCARPUS冠军(Lour。)的植物复合的相互作用确认。使用二肽基肽酶IV(DPP -IV)的大分子蛋白受体在硅分子对接研究中,以及物理化学和药代动力学特性(ADME -TOX)预测方法。使用Autodock v4.2.6(100个对接运行)将DPP -IV受体大分子蛋白蛋白数据库(ID:1×70)的活性子站点停靠。一个52×28×26Å点的网格盒子由0.37Å的距离为X =40.926Å的活动位置; y =50.522Å; Z =35.031Å。用于ADME -TOX预测,使用了基于瑞士的在线申请计划。结果表明,基于δg值和相互作用构象,来自A.冠军的12个Pythocompound具有DPP -IV抑制剂的潜力。比天然配体有五个具有较低δg值和抑制常数的Pythocompounds,七个具有δg值和抑制常数接近天然配体的Pythocompounds。12种化合物在DPP -IV受体的活性子矿石上形成了一种相互作用构象。同时,Adme -Tox预测分析的结果表明,这12种化合物具有不同的物理化学和药代动力学特性。
并可以有效地避免传统电影艺术设计和执行过程中的问题。2.1修改设计是昂贵和费力的。特别是,初始设计计划中的某些更改通常需要重新绘制图纸和重复修订。,如果在现场完成甚至翻新后提出了修改,则消耗的成本和劳动力将更高。2.2信息管理问题,相同的场景设计执行能力要求许多员工合作才能完成,并且设计计划通常需要重复修订和持续的沟通,以避免信息混乱和难以管理。2.3成本预算控制问题,传统的艺术设计工作预算通常需要经验才能估算,有时会有一些无法控制的偏差[3]。传统的电影艺术生产,创建过程中存在缺点,对纤维生产的BIM引用,简化设计过程,主要设计工作,主要设计工作着眼于完整场景模型,该模型包含先前的视觉信息,空间尺寸,环境照明,设置材料,设置材料,提供的道具和其他完整信息[12]。通过这种模型,通过相关软件,可以直接导出一系列图纸,包括场景的视觉预览部分;大气图;停靠套件的生产图;对接道具采购的舞台材料;道具,列表,预算,动态3D预览,甚至VR Interactive Preview等(图。2)。
注 1:根据国防旅行条例第 I 部分第 103 章,当 AMC 航班可用时,NAVPTO 将执行旅行执行期 (TPP),以确保最大限度地利用 AMC 的可用性。这意味着 NAVPTO 可以在请求的航班日期后 10 天内预订 PCS 旅行(如果需要宠物预订,则最多 20 天)——此预订/港口停靠正式修改成员的订单。如果预订的预订不支持任务要求(例如强制报告日期/任务关键演变),请提交来自获得指挥部的支持任务影响声明,表明需要替代交通安排(附有模板)。培训:区域支持中心 (RSC) 每周进行培训,包括交通案例提交程序。请联系您当地的 RSC 了解区域培训时间表。此外,培训幻灯片可在 MyNavy HR CPPA 资源页面上找到,在左侧菜单上导航至“RSC 联系人”。附加信息/常见问题:备用路线/与公务旅行相结合的休假 (LICWO)。NPPSC 4650/1 PRR 的第 33-34 部分为会员提供了申请备用路线或 LICWO 的机会,第 33 部分解释了备用路线的规定,但不保证根据所申请的备用路线飞行。PCS 命令指示公务旅行的权利。LICWO 由会员承担费用。
水对于我们的日常生活至关重要,是人们,动物和生态系统的重要生活来源。对于许多城镇和社区,河流和其他水域仍然是饮用水的主要来源。但是,这些水体中越来越多的废物构成了严重的威胁,仅对环境,而且对人类健康构成了威胁。即使是一块垃圾,也不小心丢弃,也会造成我们河流,湖泊和小溪的污染。通常在到达我们家之前对水进行处理,但严重污染的水体不能完全纯净,因此不适合食用。确保清洁水继续从我们的水龙头流动,这对于保护和维护我们的河流系统至关重要。这种保存需求是我们项目背后的推动力:一种自主水面清洁机器人,旨在从河流,湖泊和其他水域收集浮动碎片。机器人将在没有人类监督的情况下运行,浏览指定区域并沿其道路收集浪费。配备了相机,机器人将提供实时录像带,从而使其可以有效地识别和靶向浪费。废物将通过传送带系统收集,该系统将将碎屑运送到机器人的存储区域。装满后,机器人将停靠以清除废物,准备继续其任务。我们的目标是保持水体干净,确保所有人的健康环境和更安全的供水。关键词:水污染,环境保护,自主机器人。
摘要:黄嘌呤氧化酶(XO)是一种氟蛋白蛋白,可将低黄嘌呤氧化为黄嘌呤,然后再催化尿酸,同时产生反应性氧。XO的功能改变可能导致严重的病理疾病,包括引起痛风的高尿酸血症和组织的氧化损伤。这些发现促使研究旨在针对这种关键酶的活性。在一项虚拟筛查研究的过程中,旨在发现针对另一种氧化还原酶超氧化物歧化酶的新型抑制剂,我们鉴定了四种具有非纯碱结构的化合物,即ALS -1,-1,-8,-15和-28,能够直接抑制XO。其抑制作用机制的动力学研究允许将这些化合物定义为XO的竞争抑制剂。最有效的分子是ALS-28(K I 2.7±1.5 µm),其次是ALS-8(K I 4.5±1.5 µm),而有效的ALS-15(K I 23±9 µm)和ALS-1(K I 41±14 µm)。对接研究阐明了ALS-28的抑制活性的分子基础,这阻碍了酶腔通道的底物与动力学研究中观察到的竞争机制一致地进入底物。此外,从ALS -8,-15和-1的停靠姿势中出现的结构特征可能解释了相对于ALS -28的较低抑制能力。所有这些结构无关的化合物代表了有价值的候选物,以进一步阐述有希望的铅化合物。
• 市政增长边界,用于确认城市的增长极限。 • 土地使用要素,用于概述未来增长和发展的最合适和最理想的模式。 • 住房要素,用于评估住房条件、确定住房需求并解决住房改善机会。 • 交通要素,用于定义现有和计划中的交通模式,包括公共交通、道路、自行车和行人流动,以及以公共交通为导向的发展区域。 • 社区设施要素,用于确定公共和半公共建筑、土地和设施(如公园、行政、服务、运营和公共安全设施)的位置、特征和范围。 • 矿产资源要素 - 由于采矿和开采不是该市目前或计划中的用途,因此预计不会包括此要素。 • 发展法规要素,用于定义实施计划的工具和机制。 • 关键州关注领域要素,重点关注市政当局特有的问题 • 敏感区域要素,用于设定目标、宗旨、原则、政策和标准,以保护敏感区域免受发展的不利影响。 • 渔业要素,定义鱼类和贝类的装卸和加工区域,以及商业渔船和船只的停靠和停泊区域。 • 发展能力要素,定义全部建设潜力和相关效益和影响。 • 水资源要素,确定预计人口所需的饮用水供应,以及适合废水和雨水管理的接收水,以满足未来的发展需求。
摘要:在寻找靶向多巴胺D 3受体(D 3 R)的新型比特化合物中,N-(2,3-二氯苯基)替代嗪核(主要药物矩阵)已与6,6-或5,5-二苯基-1,4-苯基-1,4--二烷基-2-二甲酰基-2-甲酰基或1,4-碳二 - 4-碳二 - 4-碳二 - 4-碳二 - 4-4-二 - 4-4-4-二 - 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-架(分解药理)通过未取代或3-F/3-OH取代的丁基链。这种旧的杂交策略导致发现有效的D 3 r-选择性或多坐菌配体可能对中枢神经系统疾病有用。,6,6-二苯基-1,4-二氧烷衍生物3显示了D 3 r-优先效果,而对于5,5-二苯基-1,4-二恶烷和1,4-苯并二氧烷衍生物6和9的5,5-二苯基-1,4-二氧烷和9和9的有趣的多白素行为已突出显示,该行为分别显示为6和9有效的D 3 R部分激动剂。他们还表现为低功率5-HT 2A R拮抗剂和5-HT 2C R部分激动剂。这样的验证可能是发现新型抗精神病药物的一个有希望的起点。关键词:多巴胺D 3受体,比特型配体,多坐Multitarget化合物,中枢神经系统疾病,停靠研究■简介
A carbon capture system consisting of three identical modules that secrete CO 2 from the flue gas from the biomass-fired block 6 (ASV6) Compressor system where CO 2 is compressed Liquefaction system, where CO 2 is cooled, thereby becoming liquid CO 2 storage tanks with liquid CO 2 Wait (return) from warehouse and ship tank The Carbon Capture system at ASV6 for compressor and liquidfaction systems and to仓库储罐以及从仓库坦克到港口区域的更远的地方,从该港口到港口2工厂从其他地点接收CO 2的工厂,用于从其他地点接收CO 2,以从Asnæsverket从Asnæsverket运输该工厂,该工厂预计将全年运营,因为ASV6提供了电力,供暖,供暖和员工。收集/捕获的大约来自ASV6 Per年。将在冷却水通道以北的CO 2建立六个储罐。存储的总容量将不到11,000吨。co 2从工作港口运输,Co 2船可以在西部码头上停靠,称为油码头或肉体。一次只有一艘CO 2船。除了来自ASV6的CO 2外,Ørsted还希望有机会从其他位置运送CO 2以进行地质存储。co 2将在油轮中运输到ASV,并将其存储在储罐中,与ASV6的CO 2相似,并与此一起运送。asnæsverket成为CO 2集线器,用于中间存储和运输CO 2用于地质存储。
抽象的外臂动力蛋白(OAD)是纤毛跳动的主要力发生器。尽管OAD损失是人类原发性睫状运动障碍的最常见原因,但OAD的对接机制在纤毛双线微管上(DMT)仍然难以捉摸脊椎动物。在这里,我们使用斑马鱼精子和冷冻电子层析摄影术分析了脊椎动物OAD-DC(停靠复合物)的五个组成部分中的Calaxin/efcab1和ARMC4的功能。ARMC4的突变导致OAD完全丢失,而卡拉辛的突变仅导致OAD的部分损失。 详细的结构分析表明,卡拉辛 - / - OAD通过Calaxin以外的其他DC组件将DMT束缚在DMT上,并且重组卡拉辛可以自主挽救缺陷的DC结构和OAD的不稳定性。 我们的数据证明了Calaxin和ARMC4在OAD-DMT相互作用中的离散作用,这表明OAD对接在脊椎动物中DMT上的稳定过程。ARMC4的突变导致OAD完全丢失,而卡拉辛的突变仅导致OAD的部分损失。详细的结构分析表明,卡拉辛 - / - OAD通过Calaxin以外的其他DC组件将DMT束缚在DMT上,并且重组卡拉辛可以自主挽救缺陷的DC结构和OAD的不稳定性。我们的数据证明了Calaxin和ARMC4在OAD-DMT相互作用中的离散作用,这表明OAD对接在脊椎动物中DMT上的稳定过程。
新加坡海事及港务管理局 (MPA)、国家增材制造创新集群 (NAMIC) 和新加坡航运协会 (SSA) 已启动联合工业计划 (JIP),以确定增材制造 (AM 或 3D 打印) 用于船舶部件的商业可行性、技术可行性和监管要求。DNV GL 通过公开 JIP 招募被选为第一阶段的首席研究员,进行市场可行性研究,以根据 SSA 成员 JIP 合作伙伴在其船只停靠新加坡港时最常订购的零件清单来确定 AM 用于船舶部件的商业可行性。在六个月的时间里,进行了一项系统的研究,包括与新加坡海事生态系统内的 14 家 JIP 参与公司进行多次访谈、调查、数据收集和分析以及研讨会。本报告总结了背景文献研究、项目研究方法、发现、分析和结果验证。新加坡是重要的船舶零部件供应中心,为航运公司和海事公司等多元化生态系统提供支持。然而,采购船舶零部件也存在诸多挑战,包括运输和库存成本高、交货时间长以及难以找到的过时零部件。这些挑战可以通过采用 AM 来克服,AM 是实现更加数字化、互联互通和精简的工作流程的关键推动因素。AM 可作为杠杆,加强新加坡作为全球港口和一站式目的地以及数字制造中心的地位。