应用超导性的创新研究基础设施(IRIS)是一项由意大利大学和研究部长资助的项目,领导层分配给INFN和LASA实验室作为其协调员。该项目目前处于最后阶段,涉及加速器(ESMA)的能源节能,完全高温超导偶极磁铁的设计和构建。该磁铁是由ASG超导体S.P.A.设计的,在INFN LASA团队的支持下。制造将在ASG超导体S.P.A. Genova中进行。此贡献涵盖了偶极子的最终设计及其构建技术,涵盖了电磁,机械和热方面。磁性明智的,使用金属与绝缘绕组技术缠绕12个赛道线圈。整体线圈堆栈(6+6)的长度将近1米,并具有70毫米宽的免费孔,最大中央磁场为10吨。为了缠绕线圈,已经设计和购买了专用的绕组机。可以承受这样的场,即由高强度合金制成的机械结构正在产生。ESMA将是一种传导冷却的无低温磁铁,并将在20 K下运行,从而大大降低了与低温药物相关的成本。
摘要 - 这项工作着重于在国际Muon Collider合作(IMCC)框架内研究的MUON对撞机加速器的电阻偶极子磁铁的设计以及欧盟(Mucol Pro-gram)的参与。设计规格要求这些偶极子被列为非常快速的坡道,坡道时间在1 ms到10 ms的范围内。这反过来又导致需要非常高的功率,以数十GW的顺序为需要实现的快速循环同步性(RC)链。对于磁铁设计,考虑了三种几何配置,并在这项研究中进行了比较,即沙漏磁铁(以前在美国Muon Collider设计研究中考虑),窗框磁铁和H型磁铁。进行了优化程序,以最大程度地减少磁铁中存储的能量,以降低快速坡道期间的能量。根据总存储能量,运营量周期中的总损失和现场质量,比较了本文中三种考虑的配置的结果。由于低储存能量和低损耗,H型磁铁被识别为适合配置。
本文是对生命评论物理学的第一个20年中发表的最引用的文章之一的后续行动。特定的主题是“蚂蚁菌落优化”,它是解决挑战性优化问题的元疗法。由于自然蚂蚁菌落最短的路径发现行为的灵感,该优化技术构成了一个被称为群智能的较大领域的一部分。在对蚂蚁菌落优化的简短介绍之后,我们首先提供了针对算法发展而不是应用的年代。本文的主要部分介绍了对蚂蚁菌落优化文献的书目计量研究。关于有关出版物的地理起源以及随着时间的推移的研究重点的有趣趋势,可以从提出的图形和数字中学到。
宏观系统中的时间反转与日常经验相矛盾。仅通过时间反转导致杯子破碎的微观动力学,几乎不可能将破碎的杯子恢复到其原始状态。然而,借助现代量子技术提供的精确控制能力,量子系统的幺正演化可以随时间逆转。在这里,我们在原子气体中的里德堡态表示的偶极相互作用、孤立多体自旋系统中实施时间反转协议。通过改变编码自旋的状态,我们翻转了相互作用哈密顿量的符号,并通过让退磁多体状态随时间演化回磁化状态来展示磁化弛豫动力学的逆转。我们使用洛施密特回声的概念阐明了原子运动的作用。最后,通过将该方法与弗洛凯工程相结合,我们展示了具有不同对称性的大量自旋模型的时间反转。我们的状态转移方法适用于广泛的量子模拟平台,其应用范围远远超出量子多体物理学,涵盖从量子增强传感觉到量子信息扰乱。
有机分子与纳米级腔的真空场的强耦合可用于修饰其化学和物理性质。我们扩展了分子集合的Tavis – Cummings模型,并表明,静态偶极矩和偶极子自我能量产生的经常被忽视的相互作用术语对于正确描述了极化化学中的光 - 肌肉交互作用至关重要。在完整的量子描述的基础上,我们模拟了MGH +分子的激发态动力学和光谱,并共偶联与光腔。我们表明,对于获得一致的模型来说,必须包含静态偶极矩和偶极子自我能量。我们构建了一种有效的两级系统方法,该方法重现了真实分子系统的主要特征,可用于模拟较大的分子集合。
(c)当我们将气球充气至其原始半径的两倍时,表面积将增加四倍。列出的量会发生什么变化?电荷不变。与球体半径成反比的电位减小到其值的一半。现在,相同的电荷分布在原始表面积的四倍上,使表面电荷密度降低到原始值的四分之一。与表面电荷密度成正比的电场减小了相同的倍数。
作为图像处理的一种重要方法,图像差异可以使目标的边缘检测能够实现对象特征和信息压缩的识别,并且可以通过光学信息技术来提高计算速度。传统的光学图像差异方法主要依赖于使用经典4F系统的空间光谱过滤,而某些工作则集中在1D或单向之间。直到近年来,跨境的快速发展才促进了图像不同的方法。在这项工作中,基于硅空心砖电介质谐振元脉冲的发射光场演示了拉普拉斯操作设备。可以通过刺激元图支持的角度选择性的环形偶极子(TD)共振来获得光拉拉普拉斯操作所需的光传递函数(OTF)。这个空心的硅砖块不仅实现2D二阶检测,而且具有接近0.4的数值光圈,并且可以直接集成成像系统,并且可以直接集成。此类MetadeVice可能可能应用于光学传感,显微镜,机器视觉,生物医学成像等的领域。
在UTA教职员工和雷神导师的建议下,UT-Arlington CSE团队的成员提供了一个巨大的机会,可以体验现实世界中的发展条件和程序。由于各种各样的必要技术,团队面前的任务涉及陡峭的学习曲线,其中许多是团队成员的新手。最初随着团队驾驶无人汽车开发景观,持续测试,开发和部署的发展,尽管进展缓慢,但事实证明是一种成功的做法,并有助于确保生产满足竞争对手要求的车辆。通过协作,跨学科团队的工作经验丰富了每个参与者,并允许每个成员在软件,硬件和一般最佳实践中扩展其工程技能。我们要感谢雷神公司和乌特 - 阿灵顿允许我们参加这个非凡的机会。
本报告是作为由美国政府机构赞助的工作的帐户准备的。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。 以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。 本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
1个国家主要光子学和仪器的主要实验室,Zju-hangzhou全球科学与技术创新中心,信息科学与电子工程学院,吉安格大学,杭州大学,杭州310027,中国和国际联合创新中心,Zhejiang University,Zhejiang University,Zhejiang University,Hainning Interventian Ginangion Interventical of Electricals Academy明尼苏达州明尼阿波利斯大学的工程,美国3美国3号高级/纳米电子设备和智人智能系统的钥匙实验室312000,中国4物理和数学科学学院物理和应用部,以及颠覆性光子技术中心,南南技术大学,新加坡637371,新加坡