二维(2D)材料,例如,由自组装的分子单层或通过单层范围材料的单层形成,可以与光子纳米腔有效地融合,并有可能达到强耦合方案。耦合可以使用经典的谐波振荡器模型或空腔量子电动力学哈密顿量,这些模型通常忽略单层内的直接偶极 - 偶极相互作用。在这里,我们对系统的全哈密顿量进行对角,包括这些直接的偶极偶极相互作用。对典型2D系统的光学特性的主要影响只是将单层的明亮集体激发的有效能量重新归一致,并将其与纳米光子模式相结合。另一方面,我们表明,对于极端场合的情况,大型过渡偶极矩和低损失,完全包括直接偶极 - 偶极相互作用,对于正确捕获光学响应至关重要,许多集体状态都参与其中。为了量化此结果,我们提出了一个简单的方程式,该方程式指示直接相互作用强烈修改光学响应的条件。
摘要:偶极耦合很少被用作镧系元素单分子磁体中缓慢弛豫动力学的驱动力,尽管它通常是介导此类物质中离子间磁相互作用的最强机制。事实上,对于多核镧系元素复合物,由于它们能够形成高度定向、高矩基态,偶极相互作用的幅度和各向异性可能相当大。本文我们提出了单核、双核和三核铒基单分子磁体序列 ([Er −TiPS 2 COT] + ) 𝑛 (𝑛= 1 −3),其中磁弛豫路径允许性的大幅降低在角动量量子之间的偶极-偶极相互作用框架内得到合理化。由此产生的多核分子磁性设计原理源于高度各向异性磁态之间的分子内偶极耦合相互作用,为单个量化跃迁的复杂流形中的弛豫动力学提供了细致入微的证明。通过将弛豫动力学与分子磁性前所未有的频率范围(10 3 −10 −5 Hz)的交流磁场相结合,为该模型的有效性提供了实验证据。缓慢的动力学和多个低能跃迁的结合导致了许多值得注意的现象,包括在单一温度下可观察到三个明确定义的弛豫过程的镧系单分子磁体。
摘要 激光定向能量沉积(L-DED)作为一种同轴送粉金属增材制造工艺,具有沉积速率高、可制造大型部件等优点,在航空航天、交通运输等领域有着广泛的应用前景。然而,L-DED在金属零件尺寸和形状的分辨方面存在工艺缺陷,如尺寸偏差大、表面不平整等,需要高效、准确的数值模型来预测熔覆轨道的形状和尺寸。本文提出了一种考虑粉末、激光束和熔池相互作用的高保真多物理场数值模型。该模型中,将激光束模拟为高斯表面热源,采用拉格朗日粒子模型模拟粉末与激光束的相互作用,然后将拉格朗日粒子模型与有限体积法和流体体积相结合,模拟粉末与熔池的相互作用以及相应的熔化和凝固过程。
量子纠缠态的控制和操纵对于量子技术的发展至关重要。一种有前途的途径是通过它们的光学偶极-偶极相互作用耦合固态量子发射器。纠缠本身就具有挑战性,因为它需要发射器之间的纳米距离和近乎简并的电子跃迁。在这里,我们实施高光谱成像来识别耦合的二苯并蒽分子对,并通过使用斯塔克效应调整分子光学共振来找到最大纠缠的超辐射和亚辐射电子态的独特光谱特征。我们展示了使用振幅和相位定制的激光场对长寿命亚辐射离域态进行远场选择性激发。耦合分子的光学纳米显微镜揭示了由其激发路径中的量子干扰引起的空间特征,并揭示了每个发射器的位置。受控电子态叠加将有助于破译由相干耦合控制的更复杂的物理或生物机制并开发量子信息方案。
作者:G Schirò · 2020 · 被引用 4 次 — 中子通过强核力与原子核相互作用,通过偶极-偶极耦合与磁矩相互作用。... 强核力并给出 ...
对于所有 OEM 的设备,JEUMONT Electric 为其功率范围及以上的中高压发电机提供广泛的服务,最高可达 1600MVA。该公司可以在 Jeumont 工厂或全球现场调动 60 多名经验丰富的工程师和技术人员(研发、设计、装配、绕线、调试)。他们的设计和干预能力以及制造和测试手段使他们能够涵盖专门针对此类机器的全方位服务:• 测试和评估 • 纠正或程序化维护 • 维修、改造、更换、逆向工程。• 机器和网络工程(稳定性、瞬态、保护、
晶体场理论 (CFT) 是一种静电模型,该模型认为金属-配体键是离子键,纯粹由金属离子和配体之间的静电相互作用引起。对于阴离子(F - 、Cl - 、CN - ),配体被视为点电荷,对于中性分子(H 2 O、NH 3 、CO),配体被视为偶极子。孤立气态金属原子/离子中的五个 'd' 轨道具有相同的能量,即,它们是简并的。如果金属原子/离子周围有一个球对称的负电荷场,则这种简并性会保持。但是,当这个负场是由复合物中的配体(阴离子或偶极分子的负端)引起时,它会变得不对称,d 轨道的简并性会解除。这会导致 d 轨道分裂。分裂的模式取决于晶体场的性质。