摘要 - 这项工作着重于在国际Muon Collider合作(IMCC)框架内研究的MUON对撞机加速器的电阻偶极子磁铁的设计以及欧盟(Mucol Pro-gram)的参与。设计规格要求这些偶极子被列为非常快速的坡道,坡道时间在1 ms到10 ms的范围内。这反过来又导致需要非常高的功率,以数十GW的顺序为需要实现的快速循环同步性(RC)链。对于磁铁设计,考虑了三种几何配置,并在这项研究中进行了比较,即沙漏磁铁(以前在美国Muon Collider设计研究中考虑),窗框磁铁和H型磁铁。进行了优化程序,以最大程度地减少磁铁中存储的能量,以降低快速坡道期间的能量。根据总存储能量,运营量周期中的总损失和现场质量,比较了本文中三种考虑的配置的结果。由于低储存能量和低损耗,H型磁铁被识别为适合配置。
短波红外线(SWIR)是基于元图的纳米光谱中电磁频谱的一个不流失的部分,尽管它在传感和成像应用中具有战略意义。这主要归因于缺乏在此范围内量身定制光线与形式相互作用的材料系统。在此处,该限制得到了解决,并在SWIR频率下启用了偏振诱导的偏振诱导的FANO共振控制。该平台由2D SI/GE 0.9 SN 0.1 CORE/SHELL NANOWIRE ARRAY上的硅晶片上的阵列组成。通过调整光极极化,可以表明,由于电动和磁性偶极子竞争中引起的FANO共振,可以对跨表面的反射进行有效的设计。在高索引纳米线阵列中光学诱导的偶极子的干扰是额外的自由度,以量身定制方向散射和光流,同时启用急剧极化的谐振。在纳米传感器中利用了这种固定性,可在周围培养基的折射率上有效检测10-2的变化。
神经元产生电信号,通过突触传输到其他细胞。首先,动作电位 (AP) 到达突触间隙(图 1 中的步骤 1),在那里它将通过神经递质传输化学信息(图 1 中的步骤 2),从而产生突触后电位 (PSP) 和局部电流(图 1 中的步骤 3)。PSP 将产生电流接收器并传播直到细胞体以产生电流源(图 1 中的步骤 4)。因此,PSP 会产生一个由负极(即接收器)和正极(即源)组成的电偶极子。该偶极子将产生初级(细胞内)电流和次级(细胞外)电流。M/EEG 信号来自突触后电位。更具体地说,M/EEG 信号来自大量同步神经元活动的空间和时间总和。但 MEG 和 EEG 之间存在显著差异。首先,就信号本身而言,MEG 信号主要由树突水平的 PSP 产生的细胞内电流引起,细胞外电流较少;EEG 信号对应于电位差,主要由细胞外电流引起。其次,就对偶极子方向的敏感性而言,EEG 对径向电流(位于脑回水平的活动)和切向电流(在脑沟内产生)都很敏感,尽管它具有
经历了不寻常的现场诱导的过渡到另一个高场SC状态的不寻常的野外过渡,从低于t o = 0.55 k的未知有序状态出现了,而已知ce-4 f的阶段是阶段的阶段。 在这里,我们报告了CERH 2中的磁性和SC特性的MUON自旋松弛(µSR)研究,为2个在低温下的2个单晶。 ,我们通过识别下方的自发内部场来揭示了阶序的磁起源。此外,我们发现局部磁性具有大量超导性的局部磁性的证据。 我们的发现打开了阶段涉及偶极子和高阶CE-4 F矩自由度的可能性,并解释了异常的非Fermi液体行为。经历了不寻常的现场诱导的过渡到另一个高场SC状态的不寻常的野外过渡,从低于t o = 0.55 k的未知有序状态出现了,而已知ce-4 f的阶段是阶段的阶段。 在这里,我们报告了CERH 2中的磁性和SC特性的MUON自旋松弛(µSR)研究,为2个在低温下的2个单晶。 ,我们通过识别下方的自发内部场来揭示了阶序的磁起源。此外,我们发现局部磁性具有大量超导性的局部磁性的证据。 我们的发现打开了阶段涉及偶极子和高阶CE-4 F矩自由度的可能性,并解释了异常的非Fermi液体行为。经历了不寻常的现场诱导的过渡到另一个高场SC状态的不寻常的野外过渡,从低于t o = 0.55 k的未知有序状态出现了,而已知ce-4 f的阶段是阶段的阶段。 在这里,我们报告了CERH 2中的磁性和SC特性的MUON自旋松弛(µSR)研究,为2个在低温下的2个单晶。 ,我们通过识别下方的自发内部场来揭示了阶序的磁起源。此外,我们发现局部磁性具有大量超导性的局部磁性的证据。 我们的发现打开了阶段涉及偶极子和高阶CE-4 F矩自由度的可能性,并解释了异常的非Fermi液体行为。经历了不寻常的现场诱导的过渡到另一个高场SC状态的不寻常的野外过渡,从低于t o = 0.55 k的未知有序状态出现了,而已知ce-4 f的阶段是阶段的阶段。 在这里,我们报告了CERH 2中的磁性和SC特性的MUON自旋松弛(µSR)研究,为2个在低温下的2个单晶。 ,我们通过识别下方的自发内部场来揭示了阶序的磁起源。此外,我们发现局部磁性具有大量超导性的局部磁性的证据。 我们的发现打开了阶段涉及偶极子和高阶CE-4 F矩自由度的可能性,并解释了异常的非Fermi液体行为。经历了不寻常的现场诱导的过渡到另一个高场SC状态的不寻常的野外过渡,从低于t o = 0.55 k的未知有序状态出现了,而已知ce-4 f的阶段是阶段的阶段。 在这里,我们报告了CERH 2中的磁性和SC特性的MUON自旋松弛(µSR)研究,为2个在低温下的2个单晶。 ,我们通过识别下方的自发内部场来揭示了阶序的磁起源。此外,我们发现局部磁性具有大量超导性的局部磁性的证据。 我们的发现打开了阶段涉及偶极子和高阶CE-4 F矩自由度的可能性,并解释了异常的非Fermi液体行为。经历了不寻常的现场诱导的过渡到另一个高场SC状态的不寻常的野外过渡,从低于t o = 0.55 k的未知有序状态出现了,而已知ce-4 f的阶段是阶段的阶段。 在这里,我们报告了CERH 2中的磁性和SC特性的MUON自旋松弛(µSR)研究,为2个在低温下的2个单晶。 ,我们通过识别下方的自发内部场来揭示了阶序的磁起源。此外,我们发现局部磁性具有大量超导性的局部磁性的证据。 我们的发现打开了阶段涉及偶极子和高阶CE-4 F矩自由度的可能性,并解释了异常的非Fermi液体行为。经历了不寻常的现场诱导的过渡到另一个高场SC状态的不寻常的野外过渡,从低于t o = 0.55 k的未知有序状态出现了,而已知ce-4 f的阶段是阶段的阶段。 在这里,我们报告了CERH 2中的磁性和SC特性的MUON自旋松弛(µSR)研究,为2个在低温下的2个单晶。 ,我们通过识别下方的自发内部场来揭示了阶序的磁起源。此外,我们发现局部磁性具有大量超导性的局部磁性的证据。 我们的发现打开了阶段涉及偶极子和高阶CE-4 F矩自由度的可能性,并解释了异常的非Fermi液体行为。经历了不寻常的现场诱导的过渡到另一个高场SC状态的不寻常的野外过渡,从低于t o = 0.55 k的未知有序状态出现了,而已知ce-4 f的阶段是阶段的阶段。 在这里,我们报告了CERH 2中的磁性和SC特性的MUON自旋松弛(µSR)研究,为2个在低温下的2个单晶。 ,我们通过识别下方的自发内部场来揭示了阶序的磁起源。此外,我们发现局部磁性具有大量超导性的局部磁性的证据。 我们的发现打开了阶段涉及偶极子和高阶CE-4 F矩自由度的可能性,并解释了异常的非Fermi液体行为。经历了不寻常的现场诱导的过渡到另一个高场SC状态的不寻常的野外过渡,从低于t o = 0.55 k的未知有序状态出现了,而已知ce-4 f的阶段是阶段的阶段。 在这里,我们报告了CERH 2中的磁性和SC特性的MUON自旋松弛(µSR)研究,为2个在低温下的2个单晶。 ,我们通过识别下方的自发内部场来揭示了阶序的磁起源。此外,我们发现局部磁性具有大量超导性的局部磁性的证据。 我们的发现打开了阶段涉及偶极子和高阶CE-4 F矩自由度的可能性,并解释了异常的非Fermi液体行为。经历了不寻常的现场诱导的过渡到另一个高场SC状态的不寻常的野外过渡,从低于t o = 0.55 k的未知有序状态出现了,而已知ce-4 f的阶段是阶段的阶段。 在这里,我们报告了CERH 2中的磁性和SC特性的MUON自旋松弛(µSR)研究,为2个在低温下的2个单晶。 ,我们通过识别下方的自发内部场来揭示了阶序的磁起源。此外,我们发现局部磁性具有大量超导性的局部磁性的证据。 我们的发现打开了阶段涉及偶极子和高阶CE-4 F矩自由度的可能性,并解释了异常的非Fermi液体行为。经历了不寻常的现场诱导的过渡到另一个高场SC状态的不寻常的野外过渡,从低于t o = 0.55 k的未知有序状态出现了,而已知ce-4 f的阶段是阶段的阶段。 在这里,我们报告了CERH 2中的磁性和SC特性的MUON自旋松弛(µSR)研究,为2个在低温下的2个单晶。 ,我们通过识别下方的自发内部场来揭示了阶序的磁起源。此外,我们发现局部磁性具有大量超导性的局部磁性的证据。 我们的发现打开了阶段涉及偶极子和高阶CE-4 F矩自由度的可能性,并解释了异常的非Fermi液体行为。经历了不寻常的现场诱导的过渡到另一个高场SC状态的不寻常的野外过渡,从低于t o = 0.55 k的未知有序状态出现了,而已知ce-4 f的阶段是阶段的阶段。在这里,我们报告了CERH 2中的磁性和SC特性的MUON自旋松弛(µSR)研究,为2个在低温下的2个单晶。,我们通过识别下方的自发内部场来揭示了阶序的磁起源。此外,我们发现局部磁性具有大量超导性的局部磁性的证据。我们的发现打开了阶段涉及偶极子和高阶CE-4 F矩自由度的可能性,并解释了异常的非Fermi液体行为。
背景。根据目前的脉冲星发射模型,光子是在磁层和电流片内产生的,沿着分界线,位于光柱的内部和外部。无线电发射在极冠附近占优势,而高能对应物在光柱周围的区域可能会增强,无论是磁层还是风。然而,引力对它们的光变曲线和光谱特性的影响研究得很少。目的。我们提出了一种模拟中子星引力场对其发射特性影响的方法,该方法是根据广义相对论描述的缓慢旋转中子星度量中旋转偶极子的解来模拟的。方法。我们以假设背景史瓦西度量为前提,用数值方法计算了光子轨迹,将我们的方法应用于中子星辐射机制,如热点的热辐射和曲率辐射的非热磁层辐射。我们详细描述了广义相对论对远距离观察者观测的影响。结果。天空图是使用广义相对论旋转偶极子的真空电磁场计算的,扩展了之前为 Deutsch 解决方案所做的工作。我们将牛顿结果与广义相对论结果进行了比较。对于磁层发射,我们表明光子轨迹的像差和曲率以及 Shapiro 时间延迟显著影响了无线电和高能光变曲线之间的相位延迟,尽管定义脉冲星发射的特征脉冲轮廓保持不变。
季节性海面温度异常表明印度洋盆地的大多数信号在西部盆地上具有变暖信号。印度洋偶极子(IOD)目前是中性的。截至2023年8月13日的一周的IOD指数为 +0.32°C,在中性边界内(-0.40°C和 +0.40°C)。,如果按照预测,接下来的两周将超过阳性IOD阈值,2023年将被认为是阳性的IOD年。所有调查的气候模型前景表明中性IOD条件可能延续到八月(图2)。
A.介电介质中闪烁偶极子排放过程的分析..................................................................................................................................................................................................................提取内部发射光谱𝑌𝑌(𝜔𝜔)和有效的偶极矩方| 𝝁𝝁 | 2 of dipole emitter .......................................................................................................... 7 C. Purcell effect in layered medium ............................................................................................ 9 II.Influence of dipole distribution on the scintillator performance ............................... 17 III.Influence of the loss of the scintillator on the Purcell factor and scintillator performance ........................................................................................................................... 18 IV.Photonic band structure calculation of one-dimensional photonic crystal .............. 20 V. Designs with realistic materials ..................................................................................... 22 VI.Influence of the fabrication error on the scintillation performance ........................ 25 VII.光电探测器的量子效率.......................................................................................................................................................................................................
光与物质相互作用的模型通常采用偶极子近似 [1,2],在该近似中,原子与与之相互作用的电磁模式的波长相比,被视为点状物体。然而,当原子尺寸与模式波长之比增加时,偶极子近似不再成立,原子被称为“巨原子” [2,3]。到目前为止,对巨原子领域固态器件的实验研究仅限于与短波长表面声波耦合的超导量子比特 [4-10],仅探测单一频率下的原子特性。在这里,我们采用了一种替代架构,通过将小原子与多个但相隔良好、离散的位置的波导耦合来实现巨原子。我们对巨原子的实现使得可调的原子-波导耦合成为可能,该耦合具有大的导通比,并且可以通过器件设计来控制耦合谱 [3]。我们还展示了多个巨原子之间的无退相干相互作用,这种相互作用由波导中模式的准连续谱介导,这是小原子无法实现的效应 [11]。这些特性使该架构中的量子比特能够在保护配置和发射配置之间原位切换,同时保留量子比特之间的相互作用,为高保真量子模拟和非经典巡回光子生成开辟了新的可能性 [12, 13]。原子直接耦合到波导的器件可以通过波导量子电动力学 (wQED) 很好地描述。超导电路为实现和探索 wQED 物理提供了一个理想的平台,因为它可以实现
在UV和IR光谱中观察到激发DNA分子的电磁辐射和吸收。1974年的Frank-Kamenetsky组确定激发DNA分子也以厘米(超高频率,微波)范围发射,并且这种辐射是由于DNA的扭转振动引起的[1]。Bingi还指出,在整个DNA分子的扭转振动中,微波辐射发生[2]。因此,微波炉不会发出任何简短的DNA,而不是基因,而是整个DNA分子。不是质子振荡的电子,而是沿DNA螺旋的偶极子A-T和G-C。数学建模表明,DNA的短部分的固有频率位于Terahertz的范围内(见下文),实验显示了相同的[3]。
里德堡偶极子阻塞已成为诱导中性原子量子比特之间纠缠的标准机制。在这些协议中,将量子比特态耦合到里德堡态的激光场被调制以实现纠缠门。在这里,我们提出了一种通过里德堡修饰和微波场驱动的自旋翻转阻塞来实现纠缠门的替代协议 [ 1 ]。我们考虑在铯的时钟状态中编码的量子比特的具体示例。辅助超精细态经过光学修饰,使其获得部分里德堡特性。因此,它充当代理里德堡态,具有充当阻塞强度的非线性光移。可以调制将量子比特态耦合到该修饰辅助态的微波频率场以实现纠缠门。为光学区域设计的逻辑门协议可以导入到这种微波区域,对此实验控制方法更为稳健。我们表明,与通常用于里德堡实验的强偶极子阻塞模式不同,采用中等自旋翻转阻塞模式可使门运行速度更快,里德堡衰变更小。我们研究了可以产生高保真度双量子比特纠缠门的各种操作模式,并描述了它们的分析行为。除了微波控制固有的稳健性之外,我们还可以设计这些门,使其对激光振幅和频率噪声更具稳健性,但代价是里德堡衰变略有增加。