由pH,光照射和电流触发的多个切换特性,有机涂料的进度,187,108114(2024)(Q1)2。A. E. Bejan,C。P. P. Constantin,M。D. Damaceanu,二酰亚胺结构的证据差异(Fluoro)Chromic设备整体性能整合了基于多二苯胺的聚酰胺的聚酰胺,Today Chemistry,26,101100(2022)(2022)(Q2)(Q2)3。A. E. Bejan,C。V. Diconu,M。D. Damaceanu,通过碘和三苯胺基寡聚的碘掺杂调制光电 - 电子特性,电子材料杂志,50,1358–1369,(2021),(2021)(2021)(Q3)4。P. Nitschke, B. Jarząbek, M. D. Damaceanu, A. E. Bejan, P. Chaber, Spectroscopic and electrochemical properties of thiophene-phenylene based Shiff-bases with alkoxy side groups, towards photovoltaic applications, Spectrochimica Acta Part A Molecular Spectroscopy, 248, 119242, (2021) (Q2) 5.P. Nitschke,B。JarząBek,A。E。Bejan,M。D。Damaceanu,质子化对基于硫苯 - 苯基苯基的光学和电化学特性的影响,其基于碱性侧基团的Schiff基地,《物理化学杂志A. E. Bejan,M。D。Damaceanu,新的杂环共轭偶氮胺,其中包含对酸环境的光学和电化学响应,合成金属,268,116498,(2020)(2020)(Q2)7。A. E. Bejan,C。P. P. Constantin,M。D. Damaceanu,N型聚酰亚胺具有1,3,4-氧化二唑 - 取代的三苯胺单位 - 一种创新的结构方法,《物理化学杂志》 C,123,123,15908-15923,(2019),(Q1)(Q1)
b'Abstract:在石墨烯纳米结构中掺入非苯并丁基基序会显着影响其特性,从而使其对碳基电子中的应用有吸引力。然而,了解特定的非苯基结构如何影响其性质仍然有限,并且需要进一步的研究以充分理解其含义。在这里,我们报告了一种地面合成策略,用于制造非偶氮纳米仪,其中包含五角形和七型甲环的不同组合。通过扫描隧道显微镜和光谱检查研究了它们的结构和电子特性,并补充了计算研究。在AU(111)表面的前体P的热激活后,我们检测到了两种主要的纳米摄影产物。纳米谱烯A A A A嵌入了通过甲基取代基氧化环闭合形成的两个叠氮烯单元,而A A S包含一个叠氮单元和一个石 - 孔缺陷,由氧化环盘纤维和骨骼环形反应组合形成。a a A表现出抗铁磁基态,其磁性交换耦合最高的含量最高的含量含量为纳米谱,并与副产品并存,副产品具有封闭的壳构型,这是由环封元型和环型重新计算反应组合的(b a a a,b a s s s s,b a,b a s,b a,b a s s,b a s s,b s-a和b s s)。我们的结果提供了对包含非苯甲酸基序及其量身定制的电子/磁性的新型NG的单个金原子辅助合成的见解。
Katharina Weidenauer博士。 RPS6KA1作为对急性粒细胞性白血病的抗性/偶氮丁烷组合治疗的介质,该抗性症状CRISPR/CAS9敲除筛查主题/fach:Med. Med。 carstenMüller-tidow急性髓性白血病是一种侵略性血液学疾病,其特征是髓样前先驱细胞不受控制,爆炸骨髓的浸润和正常血肿的压迫。 在60岁以下的患者中,仅60岁以下的患者仅40-60%的患者,对Cytarabin和daunorubicin的标准诱导化疗可以达到65-85%的缓解率为65-85%。 该年龄段的5年生存率也从30%降至5-15%。 由于该疾病在67岁时平均被诊断出来,因此影响了老年人,由于以前的疾病,这种疾病无法再接受强化化疗,因此存在低剂量疗法的概念,其反应率的主要较差。 BCl-2抑制剂Venetoclax和降压药物azazytidine的最近批准且耐受良好的组合可以达到67%的反应率,但大多数患者在进一步的过程中会复发或从一开始就不受治疗。 这就是为什么在这项工作中进行了基因组范围的CRISPR/CAS9筛选的原因,以识别基因,传达对venetoclax/azazytidin的抗性或敏感性的原因。Katharina Weidenauer博士。RPS6KA1作为对急性粒细胞性白血病的抗性/偶氮丁烷组合治疗的介质,该抗性症状CRISPR/CAS9敲除筛查主题/fach:Med. Med。carstenMüller-tidow急性髓性白血病是一种侵略性血液学疾病,其特征是髓样前先驱细胞不受控制,爆炸骨髓的浸润和正常血肿的压迫。在60岁以下的患者中,仅60岁以下的患者仅40-60%的患者,对Cytarabin和daunorubicin的标准诱导化疗可以达到65-85%的缓解率为65-85%。该年龄段的5年生存率也从30%降至5-15%。由于该疾病在67岁时平均被诊断出来,因此影响了老年人,由于以前的疾病,这种疾病无法再接受强化化疗,因此存在低剂量疗法的概念,其反应率的主要较差。BCl-2抑制剂Venetoclax和降压药物azazytidine的最近批准且耐受良好的组合可以达到67%的反应率,但大多数患者在进一步的过程中会复发或从一开始就不受治疗。这就是为什么在这项工作中进行了基因组范围的CRISPR/CAS9筛选的原因,以识别基因,传达对venetoclax/azazytidin的抗性或敏感性的原因。作为评估的一部分,将阳性富集的SGRNA基因与已发表的CRISPR/CAS9筛查制成的基因进行了比较,以检查Venetoclax的耐药性,并一致表明SGRAS将SGRAS交给了Bax和PMAIP1(NOXA)的敲除敲除细胞凋亡的重要调节剂。编码核糖体蛋白激酶RPS6KA1的基因是最负富集的SGRNA基因之一,可以表明,RPS6KA1抑制剂BI-D1870降低了平均抑制性抑制性抑制浓度的静电剂/azacydidine insi-AzacyDidine in oci-Aml2细胞的抗抗性和先前抗抗性的抗性。此外,还表明,从BI-D1870到Venetoclax/Azazytidine的增加增加了对增殖和殖民教育能力的抑制作用,但凋亡并没有增加。对细胞表面标记的分析表明,RPS6KA1抑制有效可以消除单核细胞亚群 - 通常是耐药性发展的起点 - 这仍然是由venetoclax/azazydin不变的。患者日期的比较分析表明,在AML中,RPS6KA1比健康的造血细胞中的表达更高,并且更高的表达与存活不良有关。其他实验现在可以发现基本机制,并评估RPS6KA1对Venetoclax/Azazytidin疗法的预后和治疗益处。
在所有生命系统中的代谢网络的显着保护表明,代谢的基本结构是在地球上最早的生命阶段建立的,至少在40亿年前出现。在现代生物体中,代谢网络跨越了数百种具有数千种不同代谢物的酶[1]。在该网络中,“分解代谢”和“合成代谢”反应,即累积或分解代谢产物的反应是相互交织的,这意味着早期的代谢含有两种异植物的特征(即,胞外代谢物)和自身植物(即自我自我sysysysessiss)的特征(即对细胞外代谢物)和自身植物的消耗。在关于这种保守的基本结构的起源的竞争假设中,人们越来越多地认为,该网络来自非酶反应序列,至少部分由铁(Fe(II))和其他金属离子催化剂驱动[2-4]。在该模型中,早期酶已经是基于氨基酸的,并且是通过加速和增加非酶反应的特异性来选择的[5-8]。一个模型将非偶氮反应序列放置在代谢网络的根部也克服了“最终产品问题”,它描述了多步骤,酶促反应序列需要一个前体才能进化:形成Intermediate的酶不能直接选择Darwinian进化,因为它们不提供任何优势,因为它们不提供底层步骤,因此选择了9个功能,因此可以选择 - 因此,它可以选择 - 并选择了''''''''''''''''''''''''''''''''''''''''的确,关于金属离子在代谢进化中作用的证据正在增长。即使在没有酶的情况下,金属离子也会通过互转换反应(例如参与糖酵解的互转换反应,五旬节磷酸盐途径(PPP))以及氧化和还原性的KREBS循环[2,3]。最近的研究表明,大约90%的代谢途径取决于现代生物中的金属离子[10],该铁被回收为最多的
多功能微生物可以显着影响山地幼苗的根和射击发展,这可能会增加作批作物的产量。这项研究的目的是确定单一和合并的微生物对根部水稻幼苗的射击发展的影响。该实验是在完全随机的设计中布置的,其处理和由单一和组合的多功能微生物(M01(M01(Serratia Marcescens))处理的高地稻种子组成),M06(偶氮螺旋体),M07(芽孢杆菌),M08至M28(这些微生物的组合)和M29(对照 - 无微生物)s。带有巨大芽孢杆菌的marcescens导致根长度相对于对照,根长度最大(296%)。B. Toyonensis具有a。巴西林的Toyonensis将根表面积大大增加了209%。记录了用杆菌属芽孢杆菌接种的高地大米的根直径增加了36%。与控件有关。P. Australis和杆菌属。 与对照相比,大大增加了根体积(47%)。 可以得出结论,多功能微生物增强了根长度,根表面积,根直径和体积,并提供了更好的根发育。 关键词:微生物化,根长,发芽,有益细菌,有益真菌。P. Australis和杆菌属。大大增加了根体积(47%)。可以得出结论,多功能微生物增强了根长度,根表面积,根直径和体积,并提供了更好的根发育。关键词:微生物化,根长,发芽,有益细菌,有益真菌。引言多功能微生物的应用通过直接和间接的机制改善了植物的开发,并表明可以使农作物管理实践更加环境可持续(Cruz等,2023; Silva等,2023)。这些机制是产生特定代谢产物的结果,例如生长刺激剂(植物激素),水解酶,铁载体,抗生素和碳
评估了由硫烷金(I)化合物(I)化合物,由偶氮和磷酸盐配体制成,以筛查乳腺癌细胞板(BC)的筛查。这些化合物在中央金属周围具有N-AU-P或CL-AU-P键,并且在唑拓和/或磷酸基部分中存在质子或原始极性基团以调整其亲水性。在六个候选物中,只有具有P-AU-N环境的化合物,并且未发现配体中的羟基和羧基的化合物。The compounds were screened by MTT tests in SKBR3, A17, and MDA-MB231 cancer cells, and two compounds (namely the 4,5-dicyano-imidazolate-1yl-gold(I)-(triphenylphosphane, 5, and 4,5-dichloro-imidazolate-1yl-gold(I)-triphenylphosphane, 6) were found very细胞毒性,在MDA-MB231细胞中最活跃的50值为3.46 µm通过在处理的细胞裂解物中进行酶促测定,与对照细胞相比,已经在细胞处理后4或12小时测量了二氢叶酸还原酶(DHFR)的残留酶活性。在处理12小时后,SKBR3和A17细胞的DHFR活性显着降低,而化合物5和6,但在人类MDA-MB231细胞中却没有显着降低。有趣的是,在治疗4小时后发现它非常高,揭示了DHFR酶试验的时间依赖性。DHFR抑制数据已与硫氧还蛋白还原酶(TRXR)的DHFR抑制数据(TRXR)是金化合物的最公认的分子靶标。对于后者,发现了类似的残留活性(即SKBR3细胞和化合物5或6的匹配分别为37%和49%)。对CT-DNA(CALF-thymus-DNA)和血浆转运蛋白(例如BSA(牛血清白蛋白)和ATF(APO转移蛋白))的结合研究进行了研究。对金化合物的预期,数据支持与蛋白质的强结合(K SV值范围:1.51÷2.46×10 4 m-1),与CT-DNA的次要凹槽(K SV值范围:1.55÷6.12×10 3 M-1)的相互作用较弱。
摘要 β-谷甾醇是植物中最常见的生物活性植物甾醇之一。它具有消炎、抗氧化、免疫抑制和抗关节炎的作用。炎症与严重疾病有关,这种疾病已导致全球许多人死亡。研究发现,用于治疗炎症的大多数药物都会抑制免疫系统的功能。β-谷甾醇乙酸酯和 β-谷甾醇三醇由 β-谷甾醇合成,并对 2,2-二苯基-1-苦基肼 (DPPH)、2,2-偶氮双-3-乙基苯并噻唑啉-6-磺酸 (ABTS) 和过氧化氢进行抗氧化测试。此外,还用脂氧合酶、蛋白酶、白蛋白变性抑制和膜稳定化来测定炎症抑制。 β-谷甾醇及其合成产物的 DPPH 和 ABTS 性能结果相当,但 β-谷甾醇乙酸酯的过氧化氢清除活性高于 β-谷甾醇和 β-谷甾醇三醇。三种样品在脂氧合酶抑制方面无显著差异(P<0.05),但 β-谷甾醇三醇在 10 – 100 µg/mL 时具有更高的蛋白酶抑制率。此外,在 150 µg/mL 的测量中,β-谷甾醇乙酸酯在白蛋白变性抑制剂和膜稳定剂方面表现出明显更好的性能。β-谷甾醇合成产物的抗氧化和抗炎活性优于 β-谷甾醇。衍生物 β-谷甾醇对炎症和其他疾病具有增强的治疗效果。关键词:抗氧化剂,衍生物,炎症β-谷甾醇,合成 引言 当自由基与分子氧相互作用时,会产生活性氧,从而导致炎症。类风湿性关节炎、高血压、癌症、心脏病和炎症性肠病等许多疾病都与炎症有关,而炎症又会导致
[1] Thooyamani, KP、Khanaa, V. 和 Udayakumar, R. (2014)。基于虚拟仪器的农业自动化过程。《中东科学研究杂志》,20 (12): 2604-2612。[2] Udayakumar, R.、Kaliyamurthie, KP 和 Khanaa, TK (2014)。数据挖掘带来福音:大学尖子女生学术预测系统。《世界应用科学杂志》,29 (14): 86-90。[3] Anbuselvi, S.、Rebecca, LJ、Kumar, MS 和 Senthilvelan, T. (2012)。使用两种不同的有机肥料对黑豆中的植物化学物质进行 GC-MS 研究。《化学与制药研究杂志》,4,1246-1250。 [4] Subramanian, AP、Jaganathan, SK、Manikandan, A.、Pandiaraj, KN、Gomathi, N. 和 Supriyanto, E. (2016)。纳米药物输送系统在化疗中高效输送植物化学物质的最新趋势。RSC Advances,6(54),48294-48314。[5] Thooyamani, KP、Khanaa, V. 和 Udayakumar, R. (2014)。基于部分加密和部分推理控制的有效成本云披露。《中东科学研究杂志》,20(12),2456-2459。[6] Lingeswaran, K.、Prasad Karamcheti, SS、Gopikrishnan, M. 和 Ramu, G. (2014)。太阳能电池用化学浴沉积 CDS 薄膜的制备和特性。 《中东科学研究杂志》,20(7),812-814。[7] Maruthamani, D.、Vadivel, S.、Kumaravel, M.、Saravanakumar, B.、Paul, B.、Dhar, SS、Manikandan, A. 和 Ramadoss, G. (2017)。用于超级电容器和可见光光催化应用的精细切削刃状 Bi2O3 棒/还原氧化石墨烯 (RGO) 复合材料。《胶体与界面科学杂志》,498,449-459。[8] Gopalakrishnan, K.、Sundeep Aanand, J. 和 Udayakumar, R. (2014)。掺杂偶氮聚酯的电性能。《中东科学研究杂志》,20(11),1402-1412。 [9] Subhashree, AR, Parameaswari, PJ, Shanthi, B., Revathy, C., & Parijatham, BO (2012)。印度南部金奈健康成年人口血液学参数的参考区间。《临床与诊断研究杂志:JCDR》,6(10), 1675-1680。
小儿急性白血病是资源有限国家的一个重要挑战,在这种情况下,由于财务,后勤和监管限制,可以使用诸如汽车T细胞和免疫疗法等疗法。尽管这种疗法改变了高收入国家的治疗结果,但替代策略对于解决造血干细胞移植(HSCT)在资源有限的地区的造血干细胞移植(HSCT)后的高风险至关重要。在巴西,由于与成本和基础设施相关的挑战,与美国成千上万的CAR T细胞疗法相比,T-Cell疗法的经验仅限于100名患者(1)(1)(2)。tisagenlecleucel(Kymriah®),第一个商用汽车T细胞产品,批准了患有复发或难治性B-cell急性淋巴细胞白血病(B-all)的儿童和年轻人,于2023年在巴西供应。一项全国调查报告说,在用tisagenlecleucel治疗的七个机构中,只有15例儿科患者,其中46%的患者在270天的中位随访后,有46%的儿科患者可实现持久的缓解和B细胞Aplasia(3)。高昂的笨蛋患者可以接受治疗,因此迫切需要更广泛的资金机制或进行研究。巴西卫生监管机构(ANVISA)已实施框架,以确保对先进疗法的安全和监测,从而促进了他们在该国的介绍。Oswaldo Cruz基金会(Fiocruz)致力于通过当地生产(包括汽车T细胞疗法)的当地生产来降低成本,以扩大公共医疗保健系统中的访问。圣保罗大学(USP)RibeirãoPreto在该国开创了T-Cell开发的开发,其本地生产的成本要低得多。最近在骨髓移植期刊上发表的研究中详细介绍了这些努力,证明了这些举措在治疗儿科所有方面的可行性和安全性,并产生有希望的结果(4)。这种举措强调了学术研究和本地生产在应对低收入和中等收入国家(LMIC)的经济挑战方面的重要性。在所有复发后HSCT的CAR-T细胞中,对于预防疾病复发更为重要。已探索了移植后维护,以减轻急性白血病的复发风险。在成人急性髓细胞性白血病(AML)中广泛研究了降压剂(例如,偶氮替丁和德替滨)与Venetoclax结合的,
随着世界快速发展的经济,天然气,石油和煤炭等不可再生的自然资源的征收日益增加。这些不可再生的资源是环境污染的主要来源,它对减少污染和环境保护的需求构成压力。为了克服这些问题,搜索者正在专注于未来的替代性清洁能源,低成本和环保资源[1 E 7]。氢是能量载体的合适候选者之一,通过光催化和电化学水分裂方法对此进行了广泛研究[8 E 13]。与大规模生产的光催化相比,电解具有较高的效率[14 E 17]。elec- trocatalysts在电解过程中起着至关重要的作用,在电解过程中,由于阴极氢进化反应(HER)和氧作为阳极氧进化反应(OER)而产生氢。到目前为止,她的铂(PT)和OER的氧化偶氮被认为是最好的电催化剂,但稀缺性和高成本限制了它们的大规模生产[18,19]。氢被认为是在不久的将来可以将能量从化学能量转化为燃料电池中的电能的主要来源。用于氢生产,通常使用碱性电解方法。在碱性水电中,强大的碱性培养基被用作电解质,而hy- droxide阴离子则通过这种强的碱性培养基传递到阳极表面,它们会在其中失去电子。像镍之类的过渡金属是贵族金属的良好替代品,因为低成本,高催化性能和地球丰富的材料。应在细胞中使用具有高离子迁移率的电解质,以扩大有合并性。氢氧化钾(KOH)通常用于碱性水电解中,以避免酸性电解质发生的腐蚀问题[20,21]。通过电催化水分裂方法生产氢非常昂贵,而且碳氢化合物的产生中有96%的氢生产[22]。研究人员正在专注于开发具有较高电催化效率且对她的较低电势的新材料的新策略[23]。在电化学中,她是一个广泛调查的行动。为了增强反应动力学,阴极材料必须具有高催化效率,低成本,高表面积和高化学稳定性的特殊组合[24]。除了这些特征外,催化剂的受控形态和表面结构是