标题:通过蛋白质传输耦合作者靶向蛋白质迁移:Christine S. C. Ng,1 Aofei Liu,1 Bianxiao Cui,1 Steven M. Banik 1,2 * 1化学系,斯坦福大学,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学,加利福尼亚州94305,美国。2 Sarafan Chem-H,斯坦福大学,加利福尼亚州斯坦福大学94305,美国。 *通讯作者。 电子邮件:sbanik@stanford.edu摘要亚细胞蛋白定位调节蛋白质功能,并且可以在癌症1和神经退行性疾病中损坏2-4。 已经注释了许多蛋白质的定位5-7,并且在药理学上相关的方法来精确重新定位以解决疾病驱动表型,这将是一种有吸引力的目标治疗方法。 分子利用班车蛋白的运输来控制靶蛋白的亚细胞定位,可以为靶向蛋白质重新定位提供相互作用的培养基疗法的途径。 为了实现这一概念,我们采用了一种定量方法来识别控制劫持蛋白质运输能力,开发梭子蛋白和配体的收集能力的特征,并证明了具有内源性定位信号的蛋白质的重新定位。 使用自定义成像分析管道,我们表明,可以通过将靶蛋白与含有足够强的本地本地定位序列的靶蛋白进行分子偶联来克服内源性定位信号。 小分子介导的FUS R495X从细胞质中固定在细胞核中,在细胞应激模型中减少了细胞应激颗粒的数量。 简介2 Sarafan Chem-H,斯坦福大学,加利福尼亚州斯坦福大学94305,美国。*通讯作者。电子邮件:sbanik@stanford.edu摘要亚细胞蛋白定位调节蛋白质功能,并且可以在癌症1和神经退行性疾病中损坏2-4。已经注释了许多蛋白质的定位5-7,并且在药理学上相关的方法来精确重新定位以解决疾病驱动表型,这将是一种有吸引力的目标治疗方法。分子利用班车蛋白的运输来控制靶蛋白的亚细胞定位,可以为靶向蛋白质重新定位提供相互作用的培养基疗法的途径。为了实现这一概念,我们采用了一种定量方法来识别控制劫持蛋白质运输能力,开发梭子蛋白和配体的收集能力的特征,并证明了具有内源性定位信号的蛋白质的重新定位。使用自定义成像分析管道,我们表明,可以通过将靶蛋白与含有足够强的本地本地定位序列的靶蛋白进行分子偶联来克服内源性定位信号。小分子介导的FUS R495X从细胞质中固定在细胞核中,在细胞应激模型中减少了细胞应激颗粒的数量。简介我们将核激素受体作为可行的班车发展,可以用靶向固定化激活分子(TRAM)来利用,以重新分布驱动疾病的突变蛋白,例如SMARCB1 Q318X,TDP43 D NLS和FUS R495X。使用CAS9介导的敲入标签,我们证明了低丰度(FOXO3A)和高丰度(FKBP12)内源性蛋白质的核富集通过分子偶联到核激素受体运输。最后,在原代神经元中,小分子介导的NMNAT1从核向轴突重新分布能够减慢轴突变性,并在药理学上模仿WLDS从小鼠到某些类型的NeuroDegeneration 8。因此,靶向蛋白质重新定位的概念可以通过相互作用重新布线来治疗疾病的方法。
该药物会受到其他监测。这将允许快速识别新的安全信息。医疗保健专业人员被要求报告任何可疑的不良反应。有关如何报告不良反应的第4.8节。1。药用产品的名称velsipity 2 mg膜涂层片2。定性和定量组成,每个薄膜涂层的片剂都含有相当于2 mg etrasimod的Etrasimod精氨酸。具有已知效果的赋形剂,每个薄膜涂层的片剂含有0.0156毫克的着色剂tartrazine(E102)。有关赋形剂的完整列表,请参见第6.1节。3。制药形式胶片涂层的片剂(片剂)绿色,圆形,膜涂层的平板电脑,直径约为6毫米,一侧用“ ETR”折叠,另一侧用“ 2”折叠。4。临床细节4.1治疗指示源自治疗16岁及以上的患者,以中度至严重的溃疡性结肠炎(UC)的治疗,他们的反应不足,反应降低或对常规治疗或生物学剂不宽容。4.2应在溃疡性结肠炎治疗的医师的监督下,应在溃疡性结肠炎管理的监督下开始进行治疗。posology建议的剂量为每天服用一次2 mg etrasimod。错过剂量如果错过了剂量,则应在下一个预定时间服用规定的剂量;下一个剂量不应加倍。剂量中断如果连续7天中断治疗,建议用食物恢复前3剂的食物。
摘要:癌症已成为全球发病和死亡的主要原因之一。当前癌症治疗的一个关键缺点是缺乏靶向选择性,因为这些药物应该只对癌细胞产生作用,而不会干扰健康细胞。此外,它们的作用机制应该足够快,以避免癌细胞侵入邻近的健康组织。使用传统化疗药物和其他传统疗法,如手术和放疗,会导致脱靶相互作用并产生严重的副作用。在这方面,最近开发的靶向选择性抗体-药物偶联物 (ADC) 比传统疗法更有效,这可能是因为它们的模块化结构同时结合了许多化学特性。具体而言,ADC 由三个不同的单元组成:针对肿瘤相关抗原开发的高度选择性单克隆抗体 (Mab)、有效载荷 (细胞毒性剂) 和接头。后者应在循环中保持稳定,同时允许细胞毒性剂在靶细胞中释放。这些药物的模块化特性提供了一个平台,可以独立地操纵和提高这些分子的选择性和毒性。这反过来又导致了第二代和第三代 ADC 的产生,它们在选择性或毒性或两者方面都比以前的 ADC 更有效。开发具有更高功效的 ADC 需要在原子水平上了解分子的结构和动力学。因此,我们回顾了所有最新的计算方法,用于获得这些系统的结构、能量和动力学的全原子描述。具体而言,这包括同源性建模、分子对接和细化、原子和粗粒度分子动力学模拟、主成分和互相关分析。对 ADC 的构效关系的完整表征对于抗体-药物偶联物的研究和开发至关重要。
摘要:尽管癌症的治疗方案取得了进展,但癌症仍然是全球死亡的主要原因。因此,需要安全有效的治疗方法。短肽具有独特的性质、惊人的多功能性以及克服肽局限性的生物技术进步,在癌症管理中具有优势。已经开发了几种有吸引力的基于肽的治疗策略。在这里,我们概述了肽偶联物,它是抗体-药物偶联物的更好等价物,是下一代药物,具有精确靶向、增强细胞通透性、提高药物选择性和降低毒性等特点,可有效治疗癌症。我们讨论了药物偶联物的基本成分及其释放作用,包括从接头释放细胞毒素。我们还介绍了处于不同临床开发阶段的肽-药物偶联物以及监管和其他挑战。
近年来,抗体-药物偶联物 (ADC) 改变了乳腺癌 (BC) 的治疗方法。BC 是一组异质性恶性肿瘤,具有广泛的组织病理学特征。ADC 代表一类治疗剂,它通过连接子将抗原特异性抗体骨架与强效细胞毒性剂(有效载荷)结合,从而有助于提高治疗指数。目前,三种 ADC 已获得美国食品药品监督管理局 (FDA) 的批准,并在不同的治疗环境中常规临床使用;还有更多的 ADC 处于早期和后期开发阶段,它们未来的批准将随着时间的推移改善晚期但也可能早期 BC 患者的治疗选择。就在最近,三项 3 期试验 (ASCENT、TULIP 和 DESTINY-Breast03) 的结果被公布,这些试验评估了 sacituzumab govitecan (SG)、trastuzumab duocarmazine 和 trastuzumab deruxtecan (T-DXd) 在不同治疗环境中的效果,并显示出令人鼓舞的结果。本概述重点介绍较新的 ADC,包括 T-DXd 和 SG,以及它们的药理学、作用机制和相关研究。此外,还介绍了一些处于进一步开发阶段的较新的 ADC 试验的最新结果。
胶质母细胞瘤 (GBM) 是一种侵袭性强且致命的恶性肿瘤,尽管经过了数十年的试验,但治疗选择仍然有限。抗体药物偶联物 (ADC) 由单克隆抗体组成,该抗体可特异性识别与细胞毒性有效载荷相关的细胞表面抗原。ADC 在一系列血液肿瘤和实体肿瘤中表现出优异的疗效和/或降低的毒性,因此有 9 种 ADC 获得了监管部门的批准。ADC 也在脑肿瘤患者中进行了探索,但迄今为止收效甚微。虽然早期 ADC 在胶质瘤患者中的收效有限且毒性高,但以低免疫原性和更有效的载荷为特征的更新和改进的 ADC 已在一系列肿瘤类型中显示出良好的前景。这些较新的 ADC 也在胶质瘤患者中进行了测试,然而结果好坏参半。影响 ADC 靶向中枢神经系统有效性的因素包括充当物理和生化屏障的血脑屏障、促癌和免疫抑制肿瘤微环境以及肿瘤特征(如肿瘤体积和抗原表达)。在本文中,我们回顾了胶质瘤患者中 ADC 的持续发展数据,以及克服这些障碍以最大限度发挥其治疗潜力的潜在策略。
通过使用不同的连接子和药物附着在能够细胞内化的抗 HER2 抗体 H32 上,开发了两种抗体-药物偶联物 (ADC) 系统,即不可裂解的 H32-DM1 和可裂解的 H32-VCMMAE。利用活性功能团(包括 N-羟基琥珀酰亚胺 (NHS) 酯和马来酰亚胺)来制造 ADC。通过质谱、疏水相互作用色谱、聚丙烯酰胺凝胶电泳和体外细胞测定对 ADC 进行分析和优化。建立了几种 H32-VCMMAE ADC,它们具有更高的 DAR 和更高的合成产量,且不影响效力。H32-DM1 的抗癌功效比 Kadcyla ® 高 2 至 8 倍。H32-VCMMAE 的功效又优于 H32-DM1。这些 ADC 对 N87、SK-BR-3 和 BT474 细胞的抗癌效果顺序如下:H32-VCMMAE 系列 > H32-DM1 系列 > Kadcyla ® 。H32-VCMMAE 的最佳 DAR 为 6.6,具有良好的细胞渗透性、可在癌细胞中释放的有效载荷和高效力等理想特性。我们的结果证明了 H32-VCMMAE 作为良好 ADC 候选物的潜力。
g蛋白偶联受体(GPCR)在各种生理过程中起关键作用,并成为7个关键靶标的药物发现靶标。肽是针对8种GPCR的特别引人注目的治疗剂,因为它们经常表现出优异的亲和力,选择性和效力。然而,GPCR的动态构象状态深刻影响其与配体的相互作用10,强调了对肽设计中特定国家特定策略的需求。为了解决这个问题,11我们开发了针对GPCR的有效状态特异性肽设计框架。此方法12包括对GPCR状态转变机制的分析和特殊优化的肽结构13 GPCR,Helixfold-Multistate的预测模型,从而使我们能够评估14个设计肽的状态特异性分数。在最近的GPCR肽PDB上,HelixFold-Multistate不仅保持GPCR 15活性状态,类似于Alphafold-Multistate,而且还表现出高相互作用预测能力16与Alphafold-Multimer在Dockq和IRMS方面相当。对CXCR4肽亲和力的实验17数据表明,其置信度得分比Alphafold-Multistate的18个具有更高的相关性和筛选能力。通过采用这种设计方法,我们成功地鉴定了生长激素促促促素受体(GHSR)和Apelin受体20(APJ)的激动剂19和拮抗剂肽,分别表现出低于100 nm和10 nm的EC50值。尽管拮抗剂21肽面临挑战,但我们的方法还鉴定了GHSR和APJ的抑制剂,其IC50值分别为3.3 µm和22 20.3 µm。23 div>
polyssaccharide do serotype 1 do pneumococcos 1.2 2.2 µg polyissaccharide do serotype 3 do pneumococci 1.2 2.2 µg polyissaccharide do serotype 4 do pneumococos 1.2 2.2 µg polyssaccharide do serotype 5 do pneumococos 1,2 2.2 2.2 µg Polyssaccharide do serotype 6a do pneumococcos 1.2 2.2 µg polyissaccharide do serotype 6b do pneumococos 1.2 4.4 µg polyissaccharide do serotype 7f do pneumococos 1.2 2.2 µg polyssaccharide do serotype 8 do pneumococos 1.2 2.2 2.2 µg Polyssaccharide do serotype 9V do pneumococcos 1.2 2.2 µg polyissaccharide do serotype 10a do pneumococos 1.2 2.2 µg polyissaccharide do serotype 11a do pneumococos 1.2 2.2 µg polyssaccharide do serotype 12f do pneumococos 1,2 2.2 µg Polyssaccharide do serotype 14 do pneumococcos 1.2 2.2 µg polyissaccharide do serotype 15b do肺炎球菌1.2 2.2 µg多糖类DO血清型18c做肺炎可肺癌1.2 2.2 µg多肌糖do do serotype 19多型19f do do Serotype 19f DO肺炎肺炎1.2肺球可1.2 2.2 µg多糖糖DO血清型33F DO肺炎球菌1.2 2.2 µg div div>
IL-13R α 2阴性细胞G361(左)稳定表达萤火虫荧光素酶作为发光报告基因,命名为G361-Luc。将内源性IL-13R α 2表达的A375黑色素瘤癌细胞和G361-Luc细胞混合物(比例=2:1)接种到96孔板中,每孔4000个细胞,用0/0.1/1/10nM抗体处理6天。用Cell-Titer-Glo®活力测定试剂盒评估细胞活力。与人IgG1对照抗体(右)相比,当细胞混合物与0.1/1/10nM的LM-306孵育时观察到明显的旁观者效应。