II。 傅立叶变换与计算机视觉之间的联系以分析和处理图片或视频,即计算机视觉学科,这与分析和从视觉输入中分析和提取有意义的信息有关,采用了许多数学方法。 傅立叶变换是计算机视觉的主食,作为最基本的数学方法之一。 图片可以过滤,可以提取功能,可以注册图片,并且可以借助傅立叶变换和检查其频率含量的检查来识别所有图案。 图像通常通过计算机视觉算法作为二维像素值矩阵处理。 使用傅立叶变换,我们可以通过将其从空间域转换为频域来检查图像的基本频率组件。 为此,在图像矩阵的每一行和列中分别执行傅立叶变换。 图像过滤是对计算机视觉的傅立叶变换。 噪声和其他异常在数字图像中很常见,降低了图像质量并使进一步的处理更加困难。 通过对图片进行傅立叶变换,我们可以隔离关键频率以减少其影响。 当在频域中表示图像时,可以应用过滤操作,例如高通滤波器,以带出小功能和低通滤波器,以使图像平滑并减少噪声。 逆傅里叶变换用于通过将其转换回空间域来获取过滤的图片。 [7]II。傅立叶变换与计算机视觉之间的联系以分析和处理图片或视频,即计算机视觉学科,这与分析和从视觉输入中分析和提取有意义的信息有关,采用了许多数学方法。傅立叶变换是计算机视觉的主食,作为最基本的数学方法之一。图片可以过滤,可以提取功能,可以注册图片,并且可以借助傅立叶变换和检查其频率含量的检查来识别所有图案。图像通常通过计算机视觉算法作为二维像素值矩阵处理。使用傅立叶变换,我们可以通过将其从空间域转换为频域来检查图像的基本频率组件。为此,在图像矩阵的每一行和列中分别执行傅立叶变换。图像过滤是对计算机视觉的傅立叶变换。噪声和其他异常在数字图像中很常见,降低了图像质量并使进一步的处理更加困难。通过对图片进行傅立叶变换,我们可以隔离关键频率以减少其影响。当在频域中表示图像时,可以应用过滤操作,例如高通滤波器,以带出小功能和低通滤波器,以使图像平滑并减少噪声。逆傅里叶变换用于通过将其转换回空间域来获取过滤的图片。[7]
抽象的傅立叶变换红外光谱(FTIR)是一种具有傅立叶变换的红外光谱,用于检测和分析光谱结果。此方法用于定性和定量分析波数范围14000 cm -1 –10 cm -1的有机和无机分子。基于这些波数,红外区域分为三个区域,即近红外,中红外和远红外。该方法中使用的工具是FTIR分光光度计,其工作原理基于能量与材料之间的相互作用。这种方法是快速,无损,简单的样品制备,易用性,使用少量溶剂,因此与其他HPLC和光谱方法相比,它在环保方面友好。但是,此方法中的采样空间相对较小,因此可以阻止红外线。使用的研究方法是来自2005 - 2023年期间出版年的20条研究文章的系统文献综述(SLR)。基于对阿莫西林,五氧环肽,环丙沙星,双氯氟乙烯酸钠,头孢曲松钠,ibuprofen,valsartan和cefadroxil化合物在药物中可以使用这种方法进行分析和有机化的构造的结果。根据印尼药典IV版,分析的所有化合物浓度符合内容要求,该版本不少于90%,不超过110%。
1个生物系统机械工程系,农业与生命科学学院,智纳国立大学,大韩民国大道34134; 201860369@o.cnu.ac.kr(R.J.); akbar.faqeerzada@o.cnu.ac.kr(m.a.f.); btanima1987@gmail.com(T.B.)2 VIT设计学院多媒体系(V-Sign),Vellore Technology Institute(VIT),Vellore 632014,印度; lakshmipriya.gg@vit.ac.in 3美国农业部农业部农业研究局环境微生物和食品安全实验室,美国农业部,Barc-East,Barc-East,Barc-East,Bldg 303,Beltsville,MD 20705,美国; moon.kim@usda.gov(M.S.K. ); unsuck.baek@usda.gov(i.b.) 4农业与生命科学学院智能农业系统系,智纳国立大学,大韩民国大师,34134 *通信:chobk@cnu.ac.kr;电话。 : +82-42-821-67152 VIT设计学院多媒体系(V-Sign),Vellore Technology Institute(VIT),Vellore 632014,印度; lakshmipriya.gg@vit.ac.in 3美国农业部农业部农业研究局环境微生物和食品安全实验室,美国农业部,Barc-East,Barc-East,Barc-East,Bldg 303,Beltsville,MD 20705,美国; moon.kim@usda.gov(M.S.K.); unsuck.baek@usda.gov(i.b.)4农业与生命科学学院智能农业系统系,智纳国立大学,大韩民国大师,34134 *通信:chobk@cnu.ac.kr;电话。 : +82-42-821-67154农业与生命科学学院智能农业系统系,智纳国立大学,大韩民国大师,34134 *通信:chobk@cnu.ac.kr;电话。: +82-42-821-6715
摘要:我们对 Arunachalam、Briët 和 Palazuelos (SICOMP'19) 的主要结果进行了新的介绍,并表明量子查询算法由一类新的多项式来表征,我们称之为傅里叶完全有界多项式。我们推测所有这样的多项式都有一个影响变量。这个猜想比著名的 Aaronson-Ambainis (AA) 猜想(计算理论'14)要弱,但对量子查询算法的经典模拟具有相同的含义。我们通过证明它适用于齐次傅里叶完全有界多项式来证明 AA 猜想的一个新案例。这意味着如果 d 查询量子算法的输出是 2 次 d 的齐次多项式 p,那么它有一个影响变量至少为 Var [ p ] 2。此外,我们给出了 Bansal、Sinha 和 de Wolf (CCC'22 和 QIP'23) 的结果的另一种证明,表明块多线性完全有界多项式具有影响变量。我们的证明更简单,获得更好的常数,并且不使用随机性。
摘要量子状态的相是用于量子电信,信号处理和计算的重要信息载体。量子相估计是在量子水平上提取和控制有用信息的基本操作。在这里,我们分析了量子相估计的各种方法时,当表征量子过程的相参数被刻在连接到用作探针信号的量子状态的相对相中。估计方法基于信号处理的标准概念(傅立叶变换,最大似然),但在量子领域中运行。我们还以经典和量子形式利用了Fisher信息,以评估每种量子相估计方法的性能。我们证明了可以通过优化的量子纠缠获得的,可以通过经典地获得增强的估计性能。超出对量子相估计的意义,结果说明了信号处理的标准概念如何有助于量子信息和量子技术的持续发展。
1利物浦大学感染学院临床感染系,兽医与生态科学研究所,兽医与生态科学研究所,罗纳德·罗斯大厦系统,分子与综合生物学,利物浦大学,生物科学大楼,皇冠街,利物浦,英国4 4 4 4章,诺拉·本瓦尔·本特·阿卜杜勒拉赫曼公主学院,利雅得,11671年,沙特阿拉伯,11671年,阿拉伯人,11671年,阿拉伯人5英国利物浦的利物浦热带医学学校7传染病系,Alder Hey儿童NHS基金会信托基金会,英国利物浦Eaton Road * *作者。
在本文中,我们计算最小输出熵的确切值以及作用于基质代数m n的非常大的量子通道的完全有限的最小熵。我们的新简单方法取决于局部紧凑的量子组的理论,我们的结果使用了一个新的,精确的描述,对1 的确,我们的方法甚至允许在量子超组上使用卷积运算符。 这使我们能够将熵和能力的计算的主题平均连接到子因子平面代数。 我们还给出了每个被考虑的量子通道的经典能力的上限,这在交换案件中已经很敏锐。 令人惊讶的是,我们通过直接计算观察到,一些傅立叶乘数可以标识直接量子通道的经典示例(作为dephasing通道或去极化通道)的总和。 的确,我们表明,对Unital Qubit通道的研究可以看作是Q8的von Neumann代数上傅立叶乘数理论的一部分。 出乎意料的是,我们还将(量子)组的Ergodic动作连接到该计算主题,从而使某些转移到其他渠道。 我们还连接Werner的量子谐波分析。 最后,我们研究了纠缠的破坏和PPT傅立叶乘数,我们表征了有条件的期望,这些期望正在纠缠中断。的确,我们的方法甚至允许在量子超组上使用卷积运算符。这使我们能够将熵和能力的计算的主题平均连接到子因子平面代数。我们还给出了每个被考虑的量子通道的经典能力的上限,这在交换案件中已经很敏锐。令人惊讶的是,我们通过直接计算观察到,一些傅立叶乘数可以标识直接量子通道的经典示例(作为dephasing通道或去极化通道)的总和。的确,我们表明,对Unital Qubit通道的研究可以看作是Q8的von Neumann代数上傅立叶乘数理论的一部分。出乎意料的是,我们还将(量子)组的Ergodic动作连接到该计算主题,从而使某些转移到其他渠道。我们还连接Werner的量子谐波分析。最后,我们研究了纠缠的破坏和PPT傅立叶乘数,我们表征了有条件的期望,这些期望正在纠缠中断。
需要在吉他上产生适当的和弦和声,需要调整或调整字符串。但是,大多数吉他学习者根据听力手动进行调整。这肯定需要很长时间,因为在调整过程中,用户必须反复转动弦旋钮才能获得和谐而精确的音调。尽管当前在Android上有许多吉他调谐应用程序,但在调整过程中,用户必须手动转动String旋钮。本研究旨在创建一种称为“学习吉他和弦”的工具,以自动执行调整过程,并且根据标准吉他弦音调使用快速傅立叶变换(FFT)算法的频率,结果是快速而准确的。fft可以将信号从时域转换为频域,在时间域F(x)中的一系列数字被转换为频域F(u)。使用已执行的黑匣子测试方法考虑测试结果,可以说,基于Android上的快速傅立叶吉他调谐同步设计应用程序可以正确地获得用户输入的频率。此外,还通过将调谐过程与2个应用程序(即绝对吉他和吉他调谐器)进行比较来进行准确测试。从应用程序比较获得的结果证明,学习吉他和弦应用程序中调谐过程的准确性非常好,因为它可以产生与其他应用程序相同的结果。尽管相等的性格尺度是弦乐器最受欢迎的调音技术之一,但也应考虑其他技术,因为它用于各种乐器中。
2021年3月10日,即时发布新加坡 - 总部位于上海的傅立叶情报已与新加坡公共医疗保健领域的国家医疗保健集团(NHG)签署了一份谅解备忘录(MOU),并在当地和全球范围内认识到其医疗专业知识和设施的质量,以使其医学专家和设施的质量,以共同开发新颖的小说新颖的小说Reabefictications Innovics Innov。由NHG医学技术与创新中心(CMTI)促进的合作伙伴关系,旨在通过利用NHG的临床专业知识和转化研究能力来满足康复中未满足的临床需求,并为傅立叶智能的全球研究网络提供了可访问,可访问,可及,可及,可及,可及,可及,可及,可及,有效,有效的患者技术和人群的人群,并进行了专业人群,并进行了专业和治疗范围。NHG和Fourier Intelligence合作将重点放在这些领域:移动性,脆弱和预防。以Fourier Intelligence的Rehabhub™概念为基础,双方将共同开发家庭康复技术和设备,以帮助改善患者在医院外的护理和治疗的可及性,并减少社区环境中所需的人力。临床验证和试验,以评估此类技术和设备的安全性和功效,因为傅立叶情报和NHG都试图建立一个区域康复卓越中心。