快速傅立叶变换(FFT)广泛用于数字信号处理应用中,尤其是用于使用CNN实时对象检测的卷积操作。本文提出了用于在FPGA上实现的Radix-2 FFT计算的有效的硬件档案,采用了蝴蝶单元的多个平行和管道阶段。所提出的架构利用块RAM存储输入和Twiddle因子值来计算转换。在Zync Ultrascale FPGA上合成了所提出的体系结构的硬件,并使用诸如关键路径延迟,吞吐量,设备利用率和功耗等参数评估其性能。发现在FFTOPS中测量的8点FFT所提出的平行管道结构的性能比非二叠体的AR插条高67%。性能比较与最新的并行管道管道方法证实了所提出的FFT体系结构达到的加速度。在论文中还介绍了拟议的硬件与与Vivado Design套件捆绑在一起的FFT IP核心的合成版本的全面比较。
摘要 - 书中检索是一个代表性的反问题,其中仅使用信号的傅立叶变换的测量幅度才能恢复信号。深度学习的算法比标准算法更令人满意地重建,例如交替的投影处理和凸放松方法。但是,他们通常无法重建细节或纹理。最近,已经利用扩散模型来解决傅立叶相检索问题。这些算法提供了现实的结果,但是由于生成模型的性质,可以在重建中显示实际图像中的不存在细节。为了应对这些问题,我们提出了一种新型算法,称为“红色强调”,结合了差异扩散采样AP-ap-aper和相位检索的凸松弛方法。尤其是,用于相位检索的经典优化问题被用作额外的正则化,以在变化采样过程中正确重建相位信息。我们的实验结果证实,与现有的傅立叶相检索算法相比,所提出的红色强调可提供定性和定量改善的性能。索引术语 - 较高的相位检索,扩散模型,通过deno的调节,凸松弛
基于具有可见的红外光子对源的非线性干涉仪,利用成对生成过程的量子干扰,红外量子光谱仪,可以通过可见的光子检测来提取样品的红外光学特性,而无需用于基础光学源或检测器。我们为量子傅立叶转换红外(QFTIR)光谱制定了理论框架。所提出的傅立叶分析方法完全利用了干涉图中的相位信息,使我们能够在简单设置中确定复杂的透射率和光学常数,而无需用于光谱选择的任何色散光学器件。在实验演示中,使用低增益状态下操作的QFTIR在近红外区域测量了带通滤波器和硅胶折射率的透射光谱;这些结果与使用常规光谱仪和从参考文献估算的值非常吻合。这些示范证明了QFTIR光谱的有效性和巨大潜力。
这项研究旨在开发替代模型,以加速与碳捕获和存储(CCS)技术相关的决策过程。选择子表面CO 2存储位点通常需要昂贵,并且涉及CO 2流场的模拟。在这里,我们开发了一个基于傅立叶神经操作员(FNO)模型,用于对CO 2羽流迁移的实时高分辨率模拟。该模型经过由现实的子面参数产生的综合数据集训练,并提供O(10 5)计算加速度,并以最少的预测准确性牺牲。我们还探索了超分辨率的概念,以提高培训基于FNO的模型的计算成本。此外,我们提出了各种策略,以改善模型的预测可靠性,这是在评估实际地质地点的同时。基于NVIDIA的模量,这个新型框架将允许对CCS的站点进行快速筛选。讨论的工作流和策略可以应用于其他能源解决方案,例如地热储层建模和氢气。我们的工作量表科学机器学习模型到现实的3D系统,这些系统与现实生活中的地下含水层/储藏室更一致,为下一代数字双胞胎铺平了道路,用于亚面CCS应用程序。
在科学和工程场中,快速准确的湍流预测非常重要。在本文中,我们研究了隐式U-NET增强的傅立叶神经操作员(IUFNO),以稳定地预测三维(3D)湍流流的长期动力学。训练有素的IUFNO模型在三个摩擦雷诺数的粗网格的大涡模拟(LES)中进行了测试:re τ≈180、395和590。所采用的近壁网格比壁溶解的LES的一般要求更明显。与原始的傅立叶神经操作员(FNO),隐式FNO(IFNO)和U-NET增强的FNO(UFNO)相比,IUFNO模型具有更好的长期预测能力。数值实验表明,IUFNO框架在预测各种流量统计统计和结构的预测中,超过了传统的动态Smagorinsky模型和壁适应的本地涡流粘度模型,包括平均值和功能,包括均值和流动性速度,概率密度的功能(PDFS)和关节功能(pdfs)和关节效率。 pro文件,动能谱和Q标准(涡旋结构)。同时,训练有素的IUFNO模型在计算上比传统的LES模型快得多。因此,IUFNO模型是快速预测壁构成的湍流的有希望的方法。
1-1好奇的机器人由NASA用于探索Martes的探索://www.nasa.gov/。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 9 1-2 Bellabobot的Robobots by Robotics https:// www。 puldrobotics.com 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 9 1-3医疗机器人S5系列机器人技术采用警惕和安全费率的系统https://smprobotics.com/。 。 。 。 。 。 。 。 。 10 1-4机器人Robish Phath Robotics。 。 。 。 。 。 。 。 。 。 。 。 。 11 1-5带有catadid系统的观点c´mara。 。 。 。 。 。 。 。 。 。 11 1-6的免疫描述:全球和基于Ca-Racker点。 。1-1好奇的机器人由NASA用于探索Martes的探索://www.nasa.gov/。。。。。。。。。。。。。。。。。。。。。。9 1-2 Bellabobot的Robobots by Robotics https:// www。puldrobotics.com。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 1-3医疗机器人S5系列机器人技术采用警惕和安全费率的系统https://smprobotics.com/。。。。。。。。。10 1-4机器人Robish Phath Robotics。。。。。。。。。。。。。11 1-5带有catadid系统的观点c´mara。。。。。。。。。。11 1-6的免疫描述:全球和基于Ca-Racker点。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 1-7的未经神经元流的丰度结构(前馈)。。13 1-8卷积神经元流(CNN)的BERCE结构。。。。。。13 1-9卷积的操作围绕图像进行。。。。。14 1-10个三重红色的bing结构。。。。。。。。。。。。。。。。。。。15
上下文。自适应光学器件(AO)是一种允许地面望远镜的角度分辨率的技术。波前传感器(WFS)是此类系统的关键组成部分之一,驱动基本的性能限制。目标。在本文中,我们专注于特定类别的WFS:傅立叶过滤波前传感器(FFWFSS)。此类以其极高的灵敏度而闻名。然而,缺乏任何类型的FFWF的清晰而全面的噪声传播模型。方法。考虑到读出的噪声和光子噪声,我们得出了一个简单而全面的模型,使我们能够了解这些噪声如何在线性框架中的相重建中传播。结果。这种新的噪声传播模型适用于任何类型的FFWF,它允许人们重新审视这些传感器的基本灵敏度极限。此外,还进行了广泛使用的FFWFSS之间的新比较。我们专注于使用的两个主要FFWFS类:Zernike WFS(ZWFS)和金字塔WFS(PWFS),从而带来了对其行为的新理解。
上下文。自适应光学器件(AO)是一种允许地面望远镜的角度分辨率的技术。波前传感器(WFS)是此类系统的关键组成部分之一,驱动基本的性能限制。目标。在本文中,我们专注于特定类别的WFS:傅立叶过滤波前传感器(FFWFSS)。此类以其极高的灵敏度而闻名。然而,缺乏任何类型的FFWF的清晰而全面的噪声传播模型。方法。考虑到读出的噪声和光子噪声,我们得出了一个简单而全面的模型,使我们能够了解这些噪声如何在线性框架中的相重建中传播。结果。这种新的噪声传播模型适用于任何类型的FFWF,它允许人们重新审视这些传感器的基本灵敏度极限。此外,还进行了广泛使用的FFWFSS之间的新比较。我们专注于使用的两个主要FFWFS类:Zernike WFS(ZWFS)和金字塔WFS(PWFS),从而带来了对其行为的新理解。
本文引入了一种新的加密方法,旨在通过使用分裂的radix傅立叶变换技术来改善加密过程,称为split-radix fast fast傅立叶变换(SRFFFT)。所提出的方法基于将FFT radix-2和radix-4算法拆分,以实现SRFFT两个阶段的提高信息保证。第一阶段在输入明文上使用SRFFT算法直接计算以产生密文,而第二阶段将反向的SRFFFT算法应用于Decipher。对几种类型的加密分析攻击,例如蛮力,自相关和字典攻击,进行了相对评估,SRFFFT评估的最终结果表明,在许多实用的加密应用中,SRFFFT在许多实用的加密应用中都是可取的,因为SRFFFT复杂性在SRFFFT的复杂性中随着分裂比较计算的范围而增加,从而消除了差异的范围,从而消除了隐性攻击的范围。
本研究旨在对傅立叶变换红外光谱(FTIR)在药物化合物的分析和表征中的能力进行批判性审查。ftir已成为药物研究和药物工业中非常重要的光谱技术,可提供对分子结构,化合物鉴定和测量药物质量的深入见解。本文献综述包括通过光谱指纹鉴定药物化合物,分子结构的表征,测量药物的质量和纯度以及需要克服的边界和挑战。我们还探讨了FTIR方法论的最新发展及其与其他分析技术的集成。结果表明,从药物开发研究到控制生产质量,FTIR已成功应用于各种药物。通过了解优势,限制和当前的突破,本综述提供了FTIR在药物化合物分析中的关键作用的全面看法。关键字:FTIR,药物化合物,红外光谱,识别,表征,