摘要知识表示和推理的计算机科学领域(KRR)旨在像人类一样有效地理解,推理和解释知识。由于该领域的许多逻辑形式主义和推理方法已经表明了高阶学习的能力,例如抽象概念学习,将人工神经网络(ANN)与KRR方法集成到用于学习复杂和实用任务的KRR方法引起了很多关注。例如,神经张量网络(NTN)是神经网络模型,能够将符号表示为矢量空间,在这些模型中可以通过矩阵计算进行推理。当在逻辑张量网络(LTN)中使用时,它们能够将一阶逻辑符号(例如常数,事实和规则)嵌入到实值张量中。KRR和ANN的整合提出了将神经科学中的生物学灵感带入KRR的潜在途径。但是,高阶学习并不是人类大脑的独有性。昆虫,例如果蝇和蜜蜂,可以解决简单的关联学习任务,并学习抽象概念,例如“相同”和“差异”,这被视为高阶认知功能,通常被认为取决于自上而下的新皮层处理。用果蝇的实证研究强烈支持,即在昆虫大脑的嗅觉加工中使用了随机代表性结构。基于这些结果,我们提出了一个随机加权的特征网络(RWFN),该特征网络将随机绘制的未经训练的权重纳入编码器,该编码器使用适应性线性模型作为解码器。单个隐藏层神经网络在RWFN中模仿输入神经元和高阶处理中心之间的随机投影,该神经网络在RWFN中模仿,该神经网络使用kernel近似在输入之间更好地表示输入之间的复杂关系。由于这种特殊表示形式,RWFN可以通过仅训练线性解码器模型有效地学习输入之间的关系程度。我们将RWFN与LTN的性能进行比较,用于语义图像解释(SII)任务,这些任务被用作LTN如何利用一阶逻辑上的推理以超越仅数据驱动方法的性能的代表性示例。我们证明,与LTN相比,RWFN可以在对象分类和检测SII任务中对象之间的关系方面取得更好或类似的性能,同时使用更少的可学习参数(1:62比例)和更快的学习过程(1:2的运行速度比率)。此外,我们表明,由于随机权重不取决于数据,因此有几个解码器可以共享一个随机编码器,从而使RWFN具有独特的空间量表经济体,用于同时分类任务。
摘要知识表示和推理的计算机科学领域(KRR)旨在像人类一样有效地理解,推理和解释知识。由于该领域的许多逻辑形式主义和推理方法已经表明了高阶学习的能力,例如抽象概念学习,将人工神经网络(ANN)与KRR方法集成到用于学习复杂和实用任务的KRR方法引起了很多关注。例如,神经张量网络(NTN)是神经网络模型,能够将符号表示为矢量空间,在这些模型中可以通过矩阵计算进行推理。当在逻辑张量网络(LTN)中使用时,它们能够将一阶逻辑符号(例如常数,事实和规则)嵌入到实值张量中。KRR和ANN的整合提出了将神经科学中的生物学灵感带入KRR的潜在途径。但是,高阶学习并不是人类大脑的独有性。昆虫,例如果蝇和蜜蜂,可以解决简单的关联学习任务,并学习抽象概念,例如“相同”和“差异”,这被视为高阶认知功能,通常被认为取决于自上而下的新皮层处理。用果蝇的实证研究强烈支持,即在昆虫大脑的嗅觉加工中使用了随机代表性结构。基于这些结果,我们提出了一个随机加权的特征网络(RWFN),该特征网络将随机绘制的未经训练的权重纳入编码器,该编码器使用适应性线性模型作为解码器。单个隐藏层神经网络在RWFN中模仿输入神经元和高阶处理中心之间的随机投影,该神经网络在RWFN中模仿,该神经网络使用kernel近似在输入之间更好地表示输入之间的复杂关系。由于这种特殊表示形式,RWFN可以通过仅训练线性解码器模型有效地学习输入之间的关系程度。我们将RWFN与LTN的性能进行比较,用于语义图像解释(SII)任务,这些任务被用作LTN如何利用一阶逻辑上的推理以超越仅数据驱动方法的性能的代表性示例。我们证明,与LTN相比,RWFN可以在对象分类和检测SII任务中对象之间的关系方面取得更好或类似的性能,同时使用更少的可学习参数(1:62比例)和更快的学习过程(1:2的运行速度比率)。此外,我们表明,由于随机权重不取决于数据,因此有几个解码器可以共享一个随机编码器,从而使RWFN具有独特的空间量表经济体,用于同时分类任务。
2021年3月10日,即时发布新加坡 - 总部位于上海的傅立叶情报已与新加坡公共医疗保健领域的国家医疗保健集团(NHG)签署了一份谅解备忘录(MOU),并在当地和全球范围内认识到其医疗专业知识和设施的质量,以使其医学专家和设施的质量,以共同开发新颖的小说新颖的小说Reabefictications Innovics Innov。由NHG医学技术与创新中心(CMTI)促进的合作伙伴关系,旨在通过利用NHG的临床专业知识和转化研究能力来满足康复中未满足的临床需求,并为傅立叶智能的全球研究网络提供了可访问,可访问,可及,可及,可及,可及,可及,可及,可及,有效,有效的患者技术和人群的人群,并进行了专业人群,并进行了专业和治疗范围。NHG和Fourier Intelligence合作将重点放在这些领域:移动性,脆弱和预防。以Fourier Intelligence的Rehabhub™概念为基础,双方将共同开发家庭康复技术和设备,以帮助改善患者在医院外的护理和治疗的可及性,并减少社区环境中所需的人力。临床验证和试验,以评估此类技术和设备的安全性和功效,因为傅立叶情报和NHG都试图建立一个区域康复卓越中心。
基于具有可见的红外光子对源的非线性干涉仪,利用成对生成过程的量子干扰,红外量子光谱仪,可以通过可见的光子检测来提取样品的红外光学特性,而无需用于基础光学源或检测器。我们为量子傅立叶转换红外(QFTIR)光谱制定了理论框架。所提出的傅立叶分析方法完全利用了干涉图中的相位信息,使我们能够在简单设置中确定复杂的透射率和光学常数,而无需用于光谱选择的任何色散光学器件。在实验演示中,使用低增益状态下操作的QFTIR在近红外区域测量了带通滤波器和硅胶折射率的透射光谱;这些结果与使用常规光谱仪和从参考文献估算的值非常吻合。这些示范证明了QFTIR光谱的有效性和巨大潜力。
摘要量子状态的相是用于量子电信,信号处理和计算的重要信息载体。量子相估计是在量子水平上提取和控制有用信息的基本操作。在这里,我们分析了量子相估计的各种方法时,当表征量子过程的相参数被刻在连接到用作探针信号的量子状态的相对相中。估计方法基于信号处理的标准概念(傅立叶变换,最大似然),但在量子领域中运行。我们还以经典和量子形式利用了Fisher信息,以评估每种量子相估计方法的性能。我们证明了可以通过优化的量子纠缠获得的,可以通过经典地获得增强的估计性能。超出对量子相估计的意义,结果说明了信号处理的标准概念如何有助于量子信息和量子技术的持续发展。
