摘要:本文提出了一种新型的监督学习方法——统计自适应傅里叶分解(SAFD)。SAFD 使用正交有理系统或 Takenaka-Malmquist(TM)系统为训练集建立学习模型,在此基础上可以对未知数据进行预测。该方法侧重于信号或时间序列的分类。AFD 是一种新开发的信号分析方法,它可以自适应地将不同的信号分解为不同的 TM 系统,引入了傅里叶类型但非线性和非负的时频表示。SAFD 将学习过程与 AFD 的适应性特征充分结合起来,其中少量的学习原子足以捕获信号的结构和特征以进行分类。SAFD 有三个优点。首先,在学习过程中会自动检测和提取特征。其次,所有参数都由算法自动选择。最后,将学习到的特征以数学形式表示出来,并可以根据感应瞬时频率进一步研究特征。通过心电图 (ECG) 信号分类验证了所提方法的有效性。实验表明,该方法比其他基于特征的学习方法效果更好。
我们在稳定态、稳定秩和高阶傅里叶分析之间建立了联系。高阶傅里叶分析是数学中一个仍在发展的领域,它源于 Gowers 对 Szemer´edi 定理 [10] 的著名傅里叶分析证明。我们观察到 n -量子位元稳定态是所谓的非经典二次相函数(定义在 F np 的拟和子空间上,其中 p 是量子位元的维数),它是高阶傅里叶分析的基本对象。这使我们能够从该理论中引入工具来分析量子态的稳定秩。最近,在 [20] 中证明了 n -量子比特魔法态的稳定秩为 Ω(n)。这里我们证明 n -量子比特魔法态的量子位元类似物具有稳定秩 Ω(n),将其结果推广到任何素数维度的量子位元。我们的证明技术明确使用了高阶傅里叶分析的工具。我们相信这个例子激发了对高阶傅里叶分析在量子信息理论中的应用的进一步探索。
摘要 — 本文展示了如何在每次相位随机化之后添加第二步窗口来降低基于傅里叶的替代分析中的错误拒绝率。窗口技术减少了傅里叶级数中周期性扩展数据序列边界处的不连续性。然而,它们增加了时间域非平稳性,从而影响替代分析。这种影响对于短低通信号尤其成问题。将相同的窗口应用于替代数据允许具有相同的非平稳性。该方法通过蒙特卡罗模拟在 1 阶自回归过程零假设上进行测试。以前的方法无法同时对左侧和右侧测试产生良好的性能,对双边测试更是如此。结果表明,新方法对于单侧测试和双边测试都是保守的。为了证明所提出的窗口方法在现实环境中是有用的,在这篇扩展论文中,它被应用于 EEG 诊断问题。数据集包含 15 名受试者的 EEG 测量数据,这些受试者分为三组:注意力缺陷障碍主要为多动冲动型 (ADHD)、注意力缺陷障碍主要为注意力不集中型 (ADD);焦虑症和注意力脆弱型 (ANX)。统计和机器学习 (朴素贝叶斯) 方法均被考虑。平均短窗口 SA (MSWSA) 被用作信号特征,并研究了其相对于窗口系统的性能。主要发现是:(i) MSWSA 特征对于 ADD 的变异性小于对于 ADHD 或 ANX 的变异性,(ii) 所提出的窗口方法降低了 SA 特征的偏差和非正态性,(iii) 使用所提出的方法和朴素贝叶斯分类器,通过留一交叉验证将 ADD 与 ADHD 和 ANX 区分开来的成功率为 93%,以及 (iv) 如果没有所提出的窗口系统,新特征不可能产生有趣的结果。
电气工程处理的是时间函数信号——各种形状的电振荡。使用简单信号作为示例更容易理解电子电路中发生的基本过程。傅里叶级数展开式包括这样的事实:任何复杂形状的振荡都被具有一定振幅和相位的正弦振荡的总和所取代。
在这项工作中,我们基于傅里叶分析开发了一种高效的函数和微分算子表示。利用这种表示,我们创建了一种变分混合量子算法,用于求解静态、薛定谔型、哈密顿偏微分方程 (PDE),使用空间高效的变分电路,包括问题的对称性以及全局和基于梯度的优化器。我们使用该算法通过计算三个 PDE(即一维量子谐振子和 transmon 和 flux 量子比特)中的基态来对表示技术的性能进行基准测试,研究它们在理想和近期量子计算机中的表现。利用这里开发的傅里叶方法,我们仅使用三到四个量子比特就获得了 10-4 –10-5 阶的低保真度,证明了量子计算机中信息的高度压缩。实际保真度受到实际计算机中成本函数评估的噪声和误差的限制,但也可以通过错误缓解技术来提高。
3. 教程 1 一阶常微分方程-I 2 一阶常微分方程-II 3 微分方程的应用 4 无限级数-I 5 无限级数-II 6 傅里叶级数-I 7 傅里叶级数-II 8 傅里叶积分与变换-I 9 傅里叶积分与变换-II 10 傅里叶积分与变换-II 11 贝塔函数与伽马函数-I 12 贝塔函数与伽马函数-II 13 线性代数方程组-I 14 线性代数方程组-II 15 线性代数方程组-III
Kubo公式是我们对近平衡转运现象的理解的基石。虽然从概念上优雅,但Kubo的S线性响应理论的应用在有趣的问题上的应用是由于需要准确且可扩展到一个超出一个空间维度的大晶格大小的算法。在这里,我们提出了一个一般框架来研究大型系统,该系统结合了Chebyshev扩展的光谱准确性与分隔和串扰方法的效率。我们使用混合算法来计算具有超过10个位点的2D晶格模型的两端电导和大量电导率张量。通过有效地对数十亿次Chebyshev矩中包含的微观信息进行采样,该算法能够在存在猝灭障碍的情况下准确地解决复杂系统的线性响应特性。我们的结果为未来对以前难以访问的政权进行运输现象的研究奠定了基础。
ESTR2360 MIEG2051 Fourier Analysis with Engineering Applications 傅里叶分析及其工程应用M Prof. Chandra NAIR Y (N for IERG and MIEG student)
收到2007年9月26日; 2008年2月15日修订; 2008年2月18日接受;发表于2008年3月4日(文档ID 87957);发表于2008年3月31日,我们描述了一种扫描源源式光学相干断层扫描(OCT)系统,该系统启动了高速全速成像。我们实施了一个压电纤维担架,以在连续的A扫描之间产生定期的相移,从而引入了横向调制。然后,通过在轴向方向处理数据之前,在横向方向上执行傅立叶过滤来解决深度歧义。DC工件也被删除。关键因素是压电纤维担架可用于以高重复速率生成离散的相移。提出的实验设置是先前报道的B-M模式扫描光谱域OCT的一个改进版本,因为它不会产生其他伪像。这是一个简单且低成本的解决方案,可轻松应用伪影。©2008美国光学协会OCIS代码:110.4500,170.4500,100.5070。