本文尤其是介绍氢的储存领域和使用。过去十年的发展与氢与LOHC的储存和运输有关。这些对于满足对能源载体的未来需求至关重要,例如用于移动应用程序。为此,所有运输系统都在考虑的考虑以及技术渗透率低的农村地区的分散供应,例如西非的地区通常以缺乏能源供应为特征。LOHC中结合的氢可以提供无危险的替代品以进行分配。本文提供了转换形式以及化学载体材料的概述。二苯甲酰苯甲苯以及N-乙基碳水化合物 - 作为LOHC的示例 - 以及化学氢储存材料(如氨基硼)作为LOHC的替代品。
* 需要超低温储存(-80 °C 至 -60 °C);解冻后,在 2 °C 至 8 °C 下储存 5 天(或在 <30 °C 下储存 2 小时)。© HZJZ Croatia
将顶部的 Koolit PCM 凝胶包放回顶部。这将有助于防止退货时损坏。 将原来的外盖折回。将剩余的盖折回,露出退货运输标签,然后用胶带封住接缝。 将其交给 UPS 退回以供重复使用。
长期储能 Earthshot TM 设定了一个目标,即在未来十年内将提供 10 小时以上供电时间的系统的电网级储能成本降低 90%。储能有潜力加速电网的全面脱碳。虽然目前正在安装较短时储能以支持当今的可再生能源发电水平,但随着电网中部署更多的可再生能源,需要更长时储能技术。更便宜、更高效的储能将使捕获和储存可再生清洁能源变得更加容易,以便在发电不可用或发电量低于需求时使用 - 例如,白天产生的可再生能源(如太阳能发电)可以在晚上使用,或者在需求低的时候产生的核能可以在需求增加时使用。长期储能 Shot 考虑了所有类型的技术 - 无论是电化学、机械、热、化学载体还是任何组合 - 这些技术都有可能满足电网灵活性所需的持续时间和成本目标,并将为整个建筑物、社区或地区提供类似的显著效益。
Christopher B. Mtshali 博士是 iThemba 加速器科学实验室 (iThemba LABS) 材料研究部离子束分析 (IBA) 部门的研究科学家。作为一名研究科学家,他专门使用离子束技术对各种材料进行定量和定性分析,例如粒子诱导 X 射线发射 (PIXE)、卢瑟福背散射光谱 (RBS)(实时和正常)、弹性反冲检测分析 (ERDA) 等等。他参与了大学学生的强化培训,指导他们完成荣誉、硕士和博士研究项目。学生的培训包括实验设置技术培训和在监督下运行实验。他从事与氢存储系统相关的研究,特别关注基于 Pd、Ti、Ni 和 Mg 的多层系统。他还在进行测量离子 - 物质相互作用基本参数的实验。他撰写和合作撰写了大量同行评审的科学论文,并在多个本地和国际会议以及夏季和冬季学校展示了他的工作成果。他目前指导和共同指导硕士和博士研究生。他目前还参与了国际原子能机构的协调研究项目,例如国际原子能机构协调研究项目 (CRP) – 聚变技术相关材料辐照和特性离子束技术的开发和应用,以及题为“iThemba LABS 材料研究部离子束加速器跨国访问”的研究项目,该项目是国际原子能机构协调研究项目 – “促进离子束加速器实验”的一部分(以下简称“CRP”)。
奖项#DE-EE0006536 DOE总资金:$ 1,182,789首席研究员:Adrienne Lavine与K Lovegrove(IT Power Australia),P Kavehpour,R Wirz,Sepulveda,A Sepulveda,H Aryafar,H Aryafar,D Simonetti 3 Simonetti 3
摘要:生产和在不同应用中使用之前,可能需要纯化,运输,压缩和储存氢。氢通常存储在高压气缸中,作为低温下的液相,在打开的水箱中。这些方法带来了几个经济和安全问题。因此,液体或固体载体中的氢存储是适合将来应用的合适方法。将讨论金属和复杂氢化物中的氢吸收和解吸。的例子,包括添加剂在促进氢吸附反应中的作用。提出了使用金属氢化物作为氢载体的一些案例研究。介绍了用于储存可再生能源能量的高效金属氢化物系统的秘书项目,提供了大约50千克储存在金属氢化物中的氢。将描述一个为燃料电池驱动的无人机提供氢开发的小型氢加油站。生命周期评估(LCA)方法也很快描述了与发达系统相关的环境影响。最后,将概述主要的公开挑战,这为他们的克服提出了可能的方法。