经过靶向治疗后仍能存活下来的残留癌细胞,是最终产生耐药性疾病的“储存库”。尽管人们对靶向治疗残留细胞非常感兴趣,但由于我们对这种细胞状态中存在的脆弱性了解有限,因此努力受到了阻碍。本文,我们报告了各种致癌基因靶向疗法,包括表皮生长因子受体 (EGFR)、间变性淋巴瘤激酶 (ALK)、KRAS 和 BRAF 抑制剂,可诱导 DNA 双链断裂,从而诱导致癌基因匹配的残留肿瘤细胞中共济失调毛细血管扩张突变 (ATM) 依赖性 DNA 修复。在细胞系、小鼠异种移植模型和人类患者中观察到的这种 DNA 损伤反应是由涉及激活 caspase 3 和 7 以及下游 caspase 激活的脱氧核糖核酸酶 (CAD) 的途径驱动的。反过来,CAD 又通过 caspase 介导的其内源性抑制剂 ICAD 的降解而激活。因此,在 EGFR 突变型非小细胞肺癌 (NSCLC) 模型中,经小分子 EGFR 靶向疗法治疗后存活下来的肿瘤细胞在合成上依赖于 ATM,而与 ATM 激酶抑制剂联合治疗可在体内消灭这些细胞。这导致 EGFR 突变型 NSCLC 小鼠异种移植模型(包括来自既定细胞系和患者肿瘤的模型)中反应更具渗透性和持久性。最后,我们发现,与没有有害 ATM 突变的 EGFR 突变型 NSCLC 患者相比,携带 ATM 中同时发生的功能丧失突变的罕见 EGFR 突变型 NSCLC 患者在第一代 EGFR 抑制剂治疗中表现出更长的无进展生存期。总之,这些发现为基于机制的 ATM 抑制剂与现有靶向疗法的整合提供了理论依据。
成为数据中心集线器。这些设施是能量典范也不是什么秘密。实际上,据估计,到2030年,仅数据中心的电力需求将增加7.7GW。马来西亚将如何应对这些大力需求?根据马来西亚不断增长的能源需求,副总理拿督斯里·法迪拉·尤索夫(Datuk Seri Fadillah Yusof)也是能源过渡和水转化部长的说法,该国正在探索所有潜在的解决方案,以满足其能源需求,包括核电。支持者认为,核能提供了一致且大规模的电源,可以支持该国的经济增长而不增加碳排放。这很重要,因为马来西亚的目标是到2050年净零排放。值得注意的是,联合国第28届当事方会议在2050年到2050年将有20多个国家承认核能的三倍。但是,没有解决方案可以长期管理高级放射性废物,这可能会危害数千万到数百万年。根据世界核协会(WNA)的说法,由于铀高度放射性的性质和4'/20亿年的半衰期的4'/20亿年的半衰期,唯一的处理方法是将其存储在深层地质储存库中。此外,诸如福岛核事故等灾难导致许多国家重新考虑核电在其能源组合中的作用。这包括马来西亚,马来西亚在2018年采取了无核的立场。Mypower Corp首席执行官Siti Safinah Salleh表示,可以理解的是,核能引起了对辐射,操作安全性和放射性废物以及成本影响的安全问题。“这些对我们所有人来说都是重要的问题。无论做出哪种决定,作为一个进步的社会,我们都应该为自己提供知识并做好准备,因为核能可以在该地区开发,并且已经为许多其他国家提供了权力。”在这方面,能源过渡和水务部的特殊机构Mypower
越来越多的证据表明,人类活动可能导致自然环境中细菌抗菌素耐药性基因 (ARG) 的流行率增加。许多环境研究已经使用下一代测序方法对宏基因组进行测序。然而,这种方法是有限的,因为它不能识别出不同的未表征基因或展示活性。环境宏基因组中的 ARG 表征对于了解耐药性的演变和传播非常重要,因为有几个临床上重要的耐药性基因源自环境物种的例子。本研究采用功能宏基因组方法来检测污水污泥、污泥改良土壤、受季铵化合物 (QAC) 影响的芦苇床沉积物和受影响较小的长期管理草地土壤中编码对超广谱 β -内酰胺类 (ESBLs) 和卡巴培南类药物耐药性的基因。在污水污泥、污泥改良土壤和 QAC 影响土壤中检测到了 ESBL 和碳青霉烯酶基因,它们与临床上重要的 β -内酰胺酶基因具有不同程度的同源性。对侧翼区域进行了测序,以确定潜在的宿主背景和遗传背景。在革兰氏阴性菌中发现了新的 β -内酰胺酶基因,其中一个与插入序列相邻的基因是 Pme1,这表明最近发生了动员事件和/或未来存在转移的可能性。污水污泥和富含季铵化合物 (QAC) 的工业废水似乎会传播和/或选择在长期管理的草地土壤中未检测到的 ESBL 基因。这项工作证实了自然环境是新型和可动员抗性基因的储存库,可能对人类和动物健康构成威胁。
人乳头瘤病毒 (HPV) 诱发的宫颈癌是世界贫困/欠发达地区女性面临的主要健康问题。由于诊断较晚且预后不良,该病死亡率较高。这种癌症的最初形成和随后的发展完全依赖于两种主要致癌基因 E6 和 E7,这两种基因的组成性表达导致肿瘤发生。因此,操纵这些基因是宫颈癌治疗最成功的方式。本文回顾了 E6 和 E7 活性的结构、功能和临床维度信息。本文讨论了 E6 和 E7 的基因组组织和蛋白质结构,随后讨论了它们在宫颈组织中建立肿瘤增殖的六个主要癌症特征的机制。本综述文章的后面部分讨论了通过解除 E6 和 E7 活性发挥作用的不同治疗方式。由于 E6 和 E7 是宫颈癌细胞的生物标志物,也是推动癌症进展的因素,针对 E6 和 E7 的治疗方法已被证明在集中清除异常增殖的恶性细胞方面非常有效。包括不同形式的疫苗和先进的基因组编辑技术在内的治疗方法,抑制 E6 和 E7 活性,已被发现可以成功降低感染 HPV 的宫颈癌细胞数量。T 细胞介导的免疫疗法是另一种即将成功的治疗方法,可以根除 HPV 感染的致瘤细胞。此外,本文还回顾了使用来自植物或其他天然储存库的天然化合物(即植物治疗方法)的治疗方法,这些治疗方法通过 E6 和 E7 抑制作用证明了其抗癌潜力。因此,通过任何这些方法抑制 E6 和 E7 都是宫颈癌治疗的重要方法,本综述将详细描述,并深入了解 E6 和 E7 作用的信号通路和分子机制。
地质调查技术在优化可再生能源项目的选址和确定适合碳储存的地点以缓解气候变化方面发挥着至关重要的作用。本摘要概述了如何使用地质调查技术来实现这些目标。可再生能源开发,特别是太阳能和风能,需要仔细选择地点,以最大限度地提高能源生产效率并最大限度地减少对环境的影响。地质调查有助于评估地下地质、地形、土壤成分和水文条件等因素。这些调查有助于确定具有最佳风能或太阳能资源和适合基础设施建设的地质条件的合适地点。此外,地质调查对于确定适合碳储存的地点至关重要,碳储存是旨在减少温室气体排放的碳捕获和储存 (CCS) 技术的关键组成部分。地质构造,例如深层盐水层、枯竭的油气储层和不可开采的煤层,可作为捕获的二氧化碳 (CO 2 ) 的储存库。地质调查有助于描述这些地层的特征,以评估它们是否适合长期储存二氧化碳,同时考虑孔隙度、渗透性和密封完整性等因素。优化可再生能源项目和碳储存的选址需要全面了解地下地质和环境条件。先进的地质调查技术,如地震成像、遥感和地球物理调查,对于获取详细的地下数据至关重要。这些技术使科学家和工程师能够评估场地适宜性、评估风险并设计有效的缓解措施。总之,地质调查技术是优化可再生能源项目选址和确定合适的碳储存位置的宝贵工具。通过利用这些技术,利益相关者可以做出明智的决策,促进可持续能源发展并减轻气候变化的影响。
摘要简介免疫报告系统中的碎片化在测量加拿大原住民儿童的疫苗覆盖范围方面构成了挑战。一些国家已与艾伯塔省卫生部签订了数据共享协议,从而为计算覆盖范围提供了新的机会。方法与艾伯塔省的原住民社区合作,这项回顾性队列研究计算了常规的儿童疫苗覆盖范围。社区内外传递的疫苗的行政数据与居住在社区中的儿童的2年龄和7岁的年龄在2013 - 2019年间计算部分和完全免疫覆盖范围有关。我们还对(a)曾经和不是连续的社区居民的儿童以及(b)在储存库社区健康中心接受或未接受过第一次接种疫苗的儿童的疫苗覆盖范围。我们还计算了所有研究年份的平均完整覆盖范围,为95%CI。大多数疫苗的结果,与在第一民族卫生中心接受第一次疫苗的儿童的覆盖率更高(p <0.05),而在其他地方接受了第一批剂量的儿童的覆盖率更高。,例如,对于肺炎球菌疫苗,2岁儿童的平均覆盖率平均水平为55.7%(52.5% - 58.8%),对于那些未经疫苗的人来说,接受第一种疫苗的人为33.3%(29.4%–37.3%)的平均覆盖率为55.7%(52.5% - 58.8%)。它在7年时也更高(75.6%,72.7%–78.5%,而55.5%,49.7%–61.3%)。在储备社区健康中心发起疫苗系列的结论对覆盖范围产生了积极影响。通过数据共享协议和疫苗记录联系来衡量准确覆盖的能力将支持原住民社区识别个人和社区免疫力。这些发现还支持将健康资金和服务提供给原住民的转移,以改善儿童免疫吸收。
邀请SPWLA-2025,迪拜,2025年5月17日至21日,亲爱的SPWLA和燃油 - 燃气 - 能量行业同事,代表迪拜主持人委员会SPWLA-2025和货物物理学家协会的章节和petrophysists and Log log Analysts(Spwla)(Spwla)的愉快愉快,让您在666上的参与者,这是66岁,于2025年5月17日至21日在阿拉伯联合酋长国迪拜举行。将以“未来能源时代的技术,整合和创新”为主题,迪拜活动将标志着国际SPWLA研讨会将在世界上56%以上石油储量的地区举行的有趣时期。The conference will consist of three days of technical sessions focusing on formation evaluation of conventional and unconventional reservoirs, new technology/advanced of logging, new technology in subsurface (geophysical, geological, petrophysical and reservoir), artificial intelligent (AI), carbon capture utilization and storage (CCUS), high angle well evaluation, real-time decision-making, cased-hole, production logging,储层监视,综合储层表征,增强的石油回收(EOR)和砂岩/碳酸盐储存库案例研究,从勘探,评估到开发阶段。会议前研讨会和实地考察也将组织起来,以创造更加集中和互动的教育机会。一个行业展览将与会议平行举办,为组织提供一个出色的平台,以展示其产品和服务,以提供货物物理学家,良好的日志分析师,地下/储层工程师,该工程将传达来自世界各地的迪拜研讨会中的信息。还可以使用价值驱动的赞助软件包,旨在为我们的合作伙伴提供最大程度的曝光。我们致力于在SPWLA漫长的历史中提供一项非凡的活动,以使我们所有的行业合作伙伴获得最大的投资回报。我们期待您的支持和参与感谢&对穆罕默德(Muhammad a Gibrata),SPWLA-DUBAI博士主席和主持人年度SPWLA-2025研讨会
药物和生化的释放和输送率的动态。在传导聚合物电极[1-4]及其构造中,[5]电子电荷和(带电的)化合物之间的耦合是控制生物分子的亲和力和扩散的多功能功能。随着电荷的积累在这些电极中的变化,掺杂静电相互作用,体积膨胀和总体形态变化,从而影响生物医学综合的摄取和释放。此外,聚电解质是有效的离子交换系统,并且已经针对被动和主动药物释放应用进行了探索,[6]以纤维的形式,[7]超薄壳[8]和球体。[9]在设备结构中,共轭聚合物与聚电解质结构结合在一起,可以实现电动控制的药物输送。有机电子离子泵[10](OEIP)就是这样的离子[11,12]药物输送装置,已反复证明适合植入疗法。OEIP使用微米尺度的选择性离子导体将带电的生物分子从源储存库到目标储层或组织。OEIP已在体内通过局部递送肝透射蛋白谷氨酸[13]在体内用于调节豚鼠的听力,以通过直接将γ-氨基丁酸递送到脊髓[14]并在大鼠中停止癫痫发作,从而抑制慢性大鼠的慢性疼痛。近年来,柔性能量收获者被认为是几种分布式和自主新兴技术的替代能源。[15]然而,需要进一步的努力来实现完全或半自主的有机药物输送设备,以实现智能决策,无线沟通和自动化。在这里,我们报告了可行性,据我们所知,首次以微毛细血管的OEIP以及压电电能收割机的形式将离子型药物输送装置结合起来,这是迈向自动且高度高度局部的生物化学治疗技术的一步。[16–21],尤其是,柔性能量收获者代表了通过周围环境或人类运动和活动的定期运动或位移来为各种类型的可穿戴和可植入设备供电的有希望的能源。[22,23]通过许多实验证明了它们的可行性和实践使用的生物相容性
西红柿是蛋白质、矿物质、维生素和必需氨基酸最廉价、最容易获取的储存库(Stephen et al., 2014),含有丰富的抗氧化剂和生物活性化合物,如酚类、黄酮类、β-胡萝卜素和番茄红素,可作为对抗病原体的内源性防御机制(Simova-Stoilova et al., 2006; Bhowong et al., 2009; Pinela et al., 2012)。成熟西红柿中含有的番茄红素是一种抗氧化剂,可以抵御致癌成分。类胡萝卜素番茄红素是最重要的抗氧化剂之一,与降低多种癌症和心脏病的风险有关(Adeniyi and Ademoyegun, 2012)。研究发现,与使用传统肥料种植的番茄相比,有机种植的番茄对营养成分有显著影响 (Shankar 等人,2012)。多项研究表明,有机农业可以改善水果和蔬菜的营养特性 (Luthria 等人,2010)。相关研究表明,与传统种植的番茄汤相比,有机番茄汁含有更多的酚类物质和亲水性抗氧化剂 (Vallverdu 等人,2012)。有机肥料的使用在确保生产的可持续性方面发挥着重要作用,可以保护当前和后代的原始供应,同时提供高质量和更长的保质期 (Rembia ł kowska,2007)。向土壤中添加有机肥可以增强微生物活性,提高其保存肥料的能力,最终提高肥力和肥料利用率 (Nanwai 等人,1998)。大量可用的有机物质,例如农家肥、家禽粪便和泥炭肥料,应被视为替代且经济的肥料来源。此外,有机肥料可以作为土壤中微生物的能量来源,从而改善土壤成分和植物生长。为了减少天然岩石肥料对环境的不良影响,以及由于番茄果实的营养价值而导致消费者对番茄果实的需求不断增加,科学家和种植者纷纷开发满足延长保质期要求的方法。本研究旨在评估形态生理生化特性、有机无机营养源的影响,并确定保质期最好的番茄品种。
承担这些分歧的全球负担。[1,2]新的且高度特定的药物输送工具将有助于更好地理解复杂的神经生物学环境,并为高度局部和精确的药物输送技术铺平道路。为了最佳工作,此类设备需要达到良好的化学和生物靶特异性,同时限制了生物相容性问题或相当的副作用。如果将这些设备作为最小化的独立探针实施,则可以轻松地操纵它们以靶向特定细胞,或与不同的实验设置和感应技术结合使用,以促进广泛的诊断和治疗能力,尤其是在深层组织/有机位置。[3]在这里,我们比较了两种高精度药物输送技术,基于压力的微流体和电离基质的能力和局限性。在微流体中,药物运输受到小型流体通道中的液压的高度控制。[4,5]通过连接几个流体源和微生物流体通道,可以轻松地进行混合,开关,筛查和递送各种药物。微流体的领域包括从实验室芯片设备到游离的微流体神经探针的多种实验设置。[4,6]其他感兴趣的技术是电离,其中应用电位的调节可以使精确的剂量控制和化学特异性,只要有效的药物或神经递质是积极或负电荷的。[7]最基本的离子基因组件是有机电子离子泵(OEIP)。[8]OEIP基于一个定义明确的和封装的离子交换膜(IEM),将源电解质储存液与目标电解质分开(通常称为“离子通道”)。从广义上讲,IEM的选择性取决于固定电荷的固有极性,其电荷程度以及其孔径和密度。通过IEM离子通道从源储存库中运输,并通过离子的迁移和被动扩散来积极实现目标电解质。通过改变IEM上的施加电位,可以通过电子控制迁移离子输送率,并且可以估算出施加的电子电流的直接对应关系,并且可以估算传递的药物数量。平面OEIP设备已成功地用于各种神经系统应用,例如,通过输送γ-氨基丁酸来抑制癫痫表现活性。