摘要:最近出现了几种合成方法,将高表面积固态有机骨架材料开发成具有永久孔隙率的自由流动液体。这些多孔液体 (PL) 材料的流动性使它们在某些储存和运输过程中具有优势。然而,大多数基于骨架的材料需要使用低温来储存弱结合气体(例如 H 2 ),而在该温度下 PL 会失去流动性。基于共价有机骨架 (COF) 的 PL 可以在接近环境温度的条件下与 H 2 可逆地形成稳定的复合物,这将代表气体储存和运输应用的有希望的发展。我们在此报告一种基于负载 Cu(I) 的 COF 胶体的具有这些卓越特性的材料的开发、表征和评估。我们的合成策略需要使用原子转移自由基聚合 (ATRP) 来定制条件以在 COF 胶体周围生长坚固的聚(二甲基硅氧烷)-甲基丙烯酸酯 (PDMS-MA) 涂层。我们展示了对胶体COF涂层厚度的精准控制,并通过透射电子显微镜和动态光散射进行了量化。随后,将涂覆的COF材料悬浮在液体聚合物基质中,制成PL。CO 2 等温线证实,涂层在自由流动液体中保留了COF的总体孔隙率;而采用漫反射红外傅里叶变换光谱 (DRIFTS) 进行的CO吸附测量证实了Cu(I)配位点的保留。随后,我们使用DRIFTS和程序升温脱附测量评估了基于Cu(I) − COF的PL中的气体吸附现象。除了证实这些材料可以在温和制冷温度下或接近温和制冷温度下进行H 2 传输外,我们的观察还表明,H 2 扩散受到涂层和液体基质的玻璃化转变温度的显著影响。后者结果强调了PL在通过涂层成分调节气体扩散和储存温度方面的另一个潜在优势。
钻孔热能存储系统的优化设计可以确保满足其技术经济目标。当前的设计优化方法要么采用不适合数值优化的详细建模,要么使用不考虑操作条件的简化模型。本文提出了一种面向优化的模型和非凸优化公式,与文献中的其他研究不同,它可以考虑季节性存储大小和温度对其容量、损耗、传热速率以及连接热泵或冷却器的效率的影响。该方法应用于一个案例研究,考虑了两种情况:仅存储冷却产生的热量和集成太阳能热发电。结果表明,随着电力二氧化碳强度分布、冷却需求和碳排放价格等边界条件的变化,不仅最佳季节性存储规模会发生变化,其最佳运行条件也会发生变化。在标准边界条件下,二氧化碳排放量的潜在减少量有限(最多 6.7%),但冷却需求的增加和二氧化碳强度季节性变化的增强导致排放量减少 27.1%。太阳能发电的整合率进一步提高到43.7%,而年成本则略有增加,仅为6.1%。
泵送的水力能源存储将在未来几年内通过为电力生产和供应链中的每个链接增加价值而成为电力系统的基本要素。这些系统的增长对于改善可再生能源的整合并避免依赖化石燃料来源(例如天然气或石油)至关重要。本文介绍了与可逆的泵浦涡轮单元集成的网格连接光伏和风力发电厂的最佳小时管理模型的建模和应用,以最大程度地利用能量系统的每月运营利润并满足电力需求。技术经济调度模型被提出为混合成员优化问题。为了评估所提出的模型,它应用于西班牙案例研究系统,并获得了整整一年的结果。与没有存储的系统相比,可再生能源和泵送水力储能的组合通过将能源成本降低27%来降低能量依赖性,以满足所需的电力需求。调查结果证实,存储在能源过渡中起关键作用,以确保具有更高可再生能源生成份额的电力系统的安全性和稳定性。
图3对颗粒OM(POM)中包含的C的研究和矿物相关的OM(MOM)分数(岩石碎片梯度),具有66%,55%和29%的岩石碎片梯度,测试了14年裸露的休闲(BF)管理的作用,与作物(作物Selhausen(德国)的管理。 (a)OM分数的C比例(分数总计100%,平均值±SD)。 发现低FE土壤中的总咬合颗粒OM(POM)比例高于中型FE(p = 0.002)和高铁(P = 0.02),而没有显着的相互作用或管理效应。 (b)c贡献(分数总计到大块土壤中的绝对有机c含量;平均值±SD)。 由于FE含量和管理之间的显着相互作用(P = 0.02),我们将管理效果作为每个Fe含量的成对组合进行了测试。 通过组合密度(1.8 g cm -3)和尺寸分馏分析了颗粒和MOM分数的C分布。 (c)MOM分数中的C含量(MOM 2 - 6.3μM,MOM <2μm;平均值±SD)。 发现Fe含量与管理之间的相互作用对于MOM2-6.3μM的C含量显着(P = 0.038),并且显示出MOM <2μm的C含量的趋势(P = 0.053)。 因此,使用Tukey HSD在每种FE含量的成对组合中测试了管理效果。Selhausen(德国)的管理。(a)OM分数的C比例(分数总计100%,平均值±SD)。发现低FE土壤中的总咬合颗粒OM(POM)比例高于中型FE(p = 0.002)和高铁(P = 0.02),而没有显着的相互作用或管理效应。(b)c贡献(分数总计到大块土壤中的绝对有机c含量;平均值±SD)。由于FE含量和管理之间的显着相互作用(P = 0.02),我们将管理效果作为每个Fe含量的成对组合进行了测试。通过组合密度(1.8 g cm -3)和尺寸分馏分析了颗粒和MOM分数的C分布。(c)MOM分数中的C含量(MOM 2 - 6.3μM,MOM <2μm;平均值±SD)。发现Fe含量与管理之间的相互作用对于MOM2-6.3μM的C含量显着(P = 0.038),并且显示出MOM <2μm的C含量的趋势(P = 0.053)。因此,使用Tukey HSD在每种FE含量的成对组合中测试了管理效果。
摘要:氢气正成为燃料电池运输、热能和电力领域整合中越来越重要的能源载体。地下盐穴是储存利用可再生能源 (RES) 发电从水电解中获得的氢气的最有前途的方法之一。同时,氢气的生产可用于避免电力需求低或价格低时的能源削减。储存的氢气还可用于发电能源需求高的时候,例如燃料电池,以弥补可再生能源发电量低造成的波动和短缺。本文概述了为实现上述目的而使用和提出的利用可再生能源过剩能量从水中生产氢气的技术及其储存技术,特别是在地下盐穴中的储存技术,以及其可行性。本文根据目前的最新技术比较和总结了竞争技术,确定了氢气生产和储存的一些困难,并讨论了哪种技术最有前途。相关分析比较了氢气生产和储存系统的成本和技术经济可行性。本文还指出了氢气融入电网的潜力、技术挑战和局限性。
摘要。电转气技术通过将电能转化为气体(例如氢气),可以将可再生能源产生的多余电力储存起来。然而,纯氢储存地点的可达性存在问题。因此,除了盐穴之外,还提出了将氢气与甲烷混合并使用地下矿井挖掘来增加储存容量的想法。然而,氢气具有很强的扩散能力,可以穿过不同的材料,包括钢和一些矿物。本文提出了在废弃地下矿井挖掘中储存氢气/甲烷混合物的概念。研究重点是混凝土作为储存气体屏障的渗透性。比较了两种方法的气体渗透性:脉冲衰减和稳态。所研究的混凝土和土聚物的气体渗透性取决于成分和压力条件,包括轴向应力。使用合成化合物可以显著提高混凝土的密封性。
摘要 青霉病是影响大蒜采后的主要病害之一。2023年,该病害在泰国清迈府的大蒜[Allium ampeloprasum var. ampeloprasum (Borrer) Syme]采后储藏期间被发现。从大蒜中分离得到3个真菌分离株,根据形态特征和核糖体DNA内部转录间隔区(ITS)、β -微管蛋白(BenA)、钙调蛋白(CaM)和RNA聚合酶II第二大亚基(rpb2)基因组合序列的系统发育分析,鉴定为大蒜青霉菌(Penicillium allii)。在致病性测定中,接种分离真菌的大蒜表现出与采后储藏期间观察到的症状相似的症状。在杀菌剂筛选试验中,多菌灵、苯醚甲环唑 + 嘧菌酯和苯醚甲环唑在半剂量和推荐剂量下均能有效完全抑制该真菌,而该真菌对克菌丹和代森锰锌不敏感。此外,多菌灵、氧氯化铜、苯醚甲环唑与嘧菌酯的组合以及苯醚甲环唑单独使用时,双倍推荐剂量可完全抑制该真菌。据我们所知,这是泰国首次报道由 P. allii 引起的大蒜鳞茎采后蓝霉病。此外,杀菌剂敏感性筛选的结果有助于制定有效的管理策略,以控制由 P. allii 引起的大蒜鳞茎采后蓝霉病。
1 伊拉克大学工程学院电气工程系,巴格达 10071,伊拉克;farqad_alani@yahoo.com 2 加尔米安大学教育学院物理系,卡拉尔 46021,伊拉克;hayder.i.mohammad@garmian.edu.krd 3 巴格达大学能源工程系,巴格达 10071,伊拉克;hussein.alnajjar@coeng.uobaghdad.edu.iq (HMTA-N.);jasim@siu.edu (JMM) 4 跨学科研究中心,药理学系,萨维塔医学和技术科学研究所,萨维塔牙科学院,萨维塔大学,钦奈 600001,印度; Lakshmi@saveetha.com 5 放射学和医学成像系,应用医学科学学院,萨坦·本·阿卜杜勒阿齐兹王子大学,Al-Kharj 11942,沙特阿拉伯;m.alhassen@psau.edu.sa 6 堪培拉大学健康学院,堪培拉,ACT 2600,澳大利亚 7 库姆理工大学机械工程系,库姆 3718146645,伊朗;ebrahimnataj.m@qut.ac.ir 8 加拿大自然资源部 CanmetENERGY 研究中心,加拿大安大略省渥太华 K1A 1M1 9 食物链可持续能源利用中心,能源未来研究所,伦敦布鲁内尔大学,Kingston Lane,Uxbridge,Middlesex UB8 3PH,英国pouyan.talebizadehsardari@brunel.ac.uk (PT)
目的 面对温室效应导致的气体排放增加和化石燃料枯竭,需要采用对环境影响小且促进可再生能源的技术来满足能源需求。最近有报道称,磁加热激活的 CO 2 甲烷化是一种高效创新的电转气技术,可以成功储存可再生能源并增值二氧化碳。在这项工作中,我们对该过程进行了生命周期评估 (LCA),以突出该技术的环境潜力及其与传统加热技术的竞争力。方法 本 LCA 使用 IMPACT 2002+。所研究的过程集成了甲烷化、水电解和 CO 2 捕获与分离。这项“从摇篮到大门”的 LCA 研究不考虑反应产物甲烷的使用。使用的功能单元是产生的 CH.i 的能量含量。 LCA 是使用法国环境与能源管理局 (AD EME) 提供的 2020 年和 2050 年的能源结构数据进行的。消耗数据要么来自文献,要么从 Marbaix (2019) 讨论的 LPCNO 测量中获得。将磁加热激活的 CO 2 甲烷化对环境的影响与使用传统加热 (Helmeth) 并考虑天然气开采对环境影响的电转气厂对环境的影响进行了比较。结果表明,反应物的总流速、CO 2 来源和能源结构对可持续 CH 4 生产的环境影响起着重要作用,而所考虑的催化剂的寿命没有显著影响。由于上述参数可能得到改进,预计到 2050 年,整个过程对环境的影响将减少 75%。这表明,当与工业废气和可再生电力生产相结合时,磁加热激活的甲烷化具有很高的环境潜力。结论与现有的使用外部加热源的类似工艺相比,该技术预计在环境方面具有竞争力,并且具有极强的响应动态性,符合可再生能源生产的间歇性。
在历史条件下(1998 - 2020年),我们的模型再现了观察到的时间和空间死亡率模式。RCP2.6和RCP8.5气候场景下的未来模拟(2021 - 2070)显示了挪威云杉死亡率的周期性。即使干旱年道形模型又繁殖了过去的动态,但他们也不同意未来与干旱有关的死亡率事件的时机和幅度。包括DVM中的干旱死亡率,显示2070年地上生物量的大幅降低(例如,与没有干旱死亡率的基线模拟相比,RCP2.6中的 -18%(在所有模拟中平均)为-36%(平均值)。 根据模型,在2021年至2070年期间,德国各地的潜在收获的潜在收获减少可能会累积至3.1亿毫克C(RCP2.6)和4.47亿毫克C(RCP 8.5)。。-18%(在所有模拟中平均)为-36%(平均值)。根据模型,在2021年至2070年期间,德国各地的潜在收获的潜在收获减少可能会累积至3.1亿毫克C(RCP2.6)和4.47亿毫克C(RCP 8.5)。我们的研究强调了德国大规模未来挪威云杉森林死亡的严重风险。对此类死亡事件的幅度和时机的决定仍然高度不确定。然而,在预测建模研究中应考虑此类事件,因为它们可能对森林碳循环和收获产生基本影响。