- 热力学定律。储能系统 (ESS) 有助于我们走向更加绿色和可持续的能源环境。这些系统专为储存电能而设计,可提供多种用途以供日后使用。储能系统 (ESS) 是追求更清洁、更可持续的能源格局的重要组成部分。它们发挥着一系列重要功能,其中主要作用之一是电网平衡。储能系统擅长在需求低迷时期储存多余的能源,并在需求达到峰值时释放,从而维护电网的稳定性和可靠性。这种能力对于适应太阳能和风能等可再生能源的间歇性至关重要。储能系统通过提供稳定可靠的能源供应,有效地将可再生能源无缝整合到电网中,使可再生能源更具成本效益和可靠性。反过来,这种整合在减少我们对化石燃料的依赖和抑制温室气体排放方面发挥着关键作用。储能系统的另一个重要优势是调峰。通过抑制峰值电力需求,这些系统有助于缓解电网压力,减少建造新发电厂的需要,最终降低消费者的能源成本。此外,储能系统在停电期间可作为可靠的备用电源,确保关键系统不间断运行。这一方面对于保护企业、住宅和重要基础设施免受停电造成的破坏至关重要。总之,储能系统 (ESS) 通过解决电网稳定性、促进可再生能源整合、管理峰值负载和满足备用电源要求,在我们向可持续能源未来的过渡中发挥着核心作用,同时有助于减少我们对环境的影响。本传单展示了世界各地正在实施和研究的各种储能系统技术。
氢气 (H 2 ) 是一种清洁、高效、可靠的能源载体,应用范围十分广泛。虽然处理氢气的风险并不比处理其他能源载体(包括石油和电力)更大,但安全处理氢气对于成功引入氢气和燃料电池技术至关重要。利用可再生能源以分散方式生产的氢气或在太阳能和风能较多的国家生产的氢气可以通过现有的天然气管道或船舶以类似于天然气的液化形式安全运输。必须确保氢气生产和供应基础设施的一致、安全设计和安全运行。这还包括进一步制定安全要求和标准。对于交通领域的应用及其供应
太阳能疫苗储存器是一种利用太阳能发电的冰箱。在炎热地区,太阳能冰箱可以保持肉类和奶制品等易腐商品的低温,还可用于将疫苗保持在适当的温度,以尽量减少变质。太阳能冰箱更有可能在欠发达国家使用,以帮助减轻贫困和气候变化。发达国家的插入式冷却器配有备用发电机,可以可靠地储存疫苗,但发展中国家需要其他制冷技术,因为这些国家的电源可能无法预测。在这种情况下,太阳能疫苗储存系统可以帮助克服电力中断和移动性等问题。本概述描述了在寒冷环境中安全储存疫苗和其他医疗和家庭用品而不损害其质量。该系统将由太阳能电池板供电,电池用于存储,以及 AT MEGA 328 处理器和其他组件供电。拟议的系统将帮助用户或所有者保持凉爽的温度以保存产品。太阳能被捕获并储存在系统中以备将来使用。该系统是便携式的,用户可以随身携带。该系统还设计为在单相 230 伏电源下运行。
摘要 含水层热能存储 (ATES) 是一种节能技术,通过在含水层中存储热水和冷水来为建筑物提供供暖和制冷。在对 ATES 需求量大的地区,ATES 的采用导致了含水层的拥堵问题。通过减少相同温度的井之间的距离,可以增加含水层中存储的热能回收量,同时保证单个系统的性能。虽然这种方法在实践中得到了实施,但对其如何影响回收效率和所需的泵送能量的理解仍然缺乏。在本研究中,量化了井位对单个系统性能的影响,并制定了规划和设计指南。结果表明,当将相同温度的井的热区组合在一起时,单个系统的热回收效率会提高,这是因为发生损失的热区表面积减少。发现存储量小且井筛长的系统热回收效率提高幅度最大。对于储存量为 250,000 立方米 / 年的中等规模系统,热采效率相对增加 12%,对于小型系统(50,000 立方米 / 年),热采效率相对增加 25%。根据热采效率增加与泵送能量增加之间的权衡,同温井之间的最佳距离为热半径的 0.5 倍。相反温度的井之间的距离必须大于热半径的三倍,以避免产生负面相互作用。
生产现场的散装液氧、液氮和液氩储存系统 作为行业标准协调计划的一部分,欧洲工业气体协会 (EIGA) 发布了 EIGA Doc 127《生产现场的散装液氧、液氮和液氩储存系统》。本出版物由国际协调委员会成员联合出版。本出版物旨在作为国际协调出版物,供国际协调委员会所有成员在世界范围内使用和应用,该委员会成员包括亚洲工业气体协会 (AIGA)、压缩气体协会 (CGA)、欧洲工业气体协会 (EIGA) 和日本工业和医用气体协会 (JIMGA)。地区版具有与 EIGA 版相同的技术内容,但是,主要在格式、使用的单位和拼写方面有所编辑变化。地区监管要求适用于欧洲。
本作品是作为美国政府机构赞助工作的记录而编写的。美国政府及其任何机构、其任何雇员、其任何承包商、分包商或其雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用的结果做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构、其承包商或分包商的观点和意见。
创新的控制方法是为红狼混合储存系统的。该技术的目的是住宅住宅,并允许使用高CO 2排放的时间减少电网的负载。红色狼系统由电池,水缸,光伏阵列和储藏加热器组成。这项技术允许在“最绿色”时间存储网格能,以便借助AI满足住宅的需求。可以获得可获得的渐进性阈值接近最高可节省14%CO 2的原始红狼算法。有趣的是,对于预测错误的系统,节省仅略低于全球可能的数学最低最低最低限度。但是,与标准优化技术相比,提出的控制方法的计算时间较低。此外,如果在使用TARI虫或环境信号的时间之间存在显着差异,则进行11个月周期的调查,以便发现。结果,表明在两种情况下,在任何信号之后的两种情况下的差异都较小,可改善使用的能量质量。,尽管价格信号已经对目标的选择略有影响。最后,带有2 kWh电池和4 kW PV阵列的平均系统组成可将CO 2排放量和账单的55%-60%减少。这种成就可能会导致用气体和油加热器平稳替换碳密集型住宅系统。
鉴于电动汽车(EV)存储系统中当前的负载和功率密度限制,有必要研究混合和控制系统,以优化其性能并将其作为内燃烧引擎(ICE)车辆的真正替代品。这意味着制定立法和特定法规,使这些混合系统的存储和管理系统的研究和开发。此处提供的研究旨在分析电动汽车未来的中小企业(超导磁能存储)储能系统的实施。为此,已经考虑了混合存储系统的需求,并具有多种监管选择,例如降低利率或促进私人投资,这允许电动汽车的技术发展。根据其目标,寻求的是实现不同国家提出的减少温室气体(GHG)的市场份额。必须从具有不同文化,管理模型和实施潜力的几个国家或地区的立法和监管观点,特定于电动汽车和收费点的立法和监管角度采取这种方法,例如美利坚合众国(美国),欧洲和中国。此分析与该存储系统可能涉及的成本的经济研究有关,以替代冰车的实施,从而带来了可能的经济利益以及使用电动汽车的环境利益。c⃝2021作者。由Elsevier Ltd.在此分析中,可以观察到使用这些特征的混合系统的当前高成本,可以观察到三个EV的比较以及运输产生的GHG排放的当前数据。所有这些都带来了一系列的优势和缺点,必须考虑这些优势和缺点,以实现在未来几十年的EV扩散中国家实现的目标。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
抽象泵送 - 氢存储(P-HS)技术在能源存储方面受到了一些很大的关注。但是,它在洪水风险中的应用是一个新的维度,鉴于某些技术特征和系统的组件,它值得一看。这项研究借鉴了现有知识体的综合,以假定P-HS操作与洪水风险减轻之间的潜在联系。这项研究是探索P-HS在减轻洪水风险中潜在应用的首次尝试,并考虑了其他一些多重益处。这项研究提出了许多问题和考虑因素,包括例如,储能和洪水风险之间的联系是什么?;需要考虑在洪水风险中应用P-HS的关键领域是什么?; P-HS的开发如何使洪水风险减轻?以及如何以吸引利益相关者和投资者利益的方式实现?提出了一个概念框架,该概念框架旨在与需要考虑的关键领域建立这些链接,以根据建议在洪水风险减轻洪水风险中应用的应用。此后,讨论了P-HS可以提供的多种收益,包括提高环境弹性以及更广泛的经济利益。关键字:洪水风险减轻,能源存储,洪水,抽水式储存。
世界各地海港的集装箱运输量不断增加,而能源成本是总成本中的重要组成部分。耶夫勒港的集装箱码头 (CT) 是瑞典东海岸最大的集装箱码头,也不例外。随着运输量逐年增长,未来几年将开放一个新码头,在现有的两台岸边起重机 (STS) 基础上再增加三台和六台电动橡胶轮胎龙门起重机 (eRTG)。因此,加强能源效率措施,降低能源消耗和相关成本至关重要。因此,本报告旨在分析在耶夫勒港集装箱码头起重机中实施储能系统是否有助于通过在制动降低集装箱时回收能量以及削减电力峰值来降低电力成本。在对当前能源回收和存储方案进行文献综述后,本文提出了三种解决方案:两种方案适用于目前使用两台岸桥 (STS) 起重机的情况,第三种解决方案将在未来安装的三台 STS 起重机中实施,这也对码头中的任何其他起重机都有好处。根据所做的计算,这三种方案可以减少大量能源消耗,而且利润丰厚。然而,这些解决方案只是初步研究,还需要做更多的工作来确定确切的盈利能力和技术系统细节。这项工作是与耶夫勒港和集装箱码头运营公司 Yilport 合作完成的。