摘要本文的特定目的在于:为材料科学、化学或电子学等领域的读者提供利用其材料系统实施储层计算 (RC) 实验的概述。关于该主题的介绍性文献很少,绝大多数评论都提出了 RC 的基本概念,这些概念对于不熟悉机器学习领域的人来说可能并不简单(例如,参见参考文献 Lukoˇseviˇcius (2012 Neural Networks: Tricks of the Trade (Berlin: Springer) pp 659–686)。考虑到大量表现出非线性行为和短期记忆的材料系统可用于设计新颖的计算范式,这是令人遗憾的。RC 提供了一个使用材料系统进行计算的框架,该框架可以避免在硬件上实现传统的、功能齐全的前馈神经网络时出现的典型问题,例如最小的设备间变异性以及对每个单元/神经元和连接的控制。相反,可以使用随机的、未经训练的储存器,其中仅优化输出层,例如使用线性回归。在下文中,我们将重点介绍 RC 在基于硬件的神经网络中的潜力,以及相对于更传统的方法,以及在实施过程中需要克服的障碍。准备一个高维非线性系统作为特定任务的高性能储存器并不像乍看起来那么容易。我们希望本教程能够降低科学家试图利用他们的非线性系统进行通常在机器学习和人工智能领域执行的计算任务的障碍。与本文配套的模拟工具可在线获取 7 。
中苏门答腊盆地是一个具有巨大石油和天然气潜力的沉积盆地。利用这一潜力所做的努力之一是利用地震方法进行地球物理勘探。地震方法是提供地球地下状况(例如层结构、地质结构、碳氢化合物指标以及储层的物理性质)清晰图像的最优秀方法。本研究采用了地震反演方法和地震属性方法。使用的地震属性是均方根 (RMS) 和包络属性。同时,所采用的地震反演是声阻抗反演(AI)。 RMS 和包络属性有助于绘制地震波的最大振幅,这些地震波反映了地表以下的密度或岩性差异,并指示了具有储层潜力的区域的存在。声阻抗反演可以绘制某一层的声阻抗值,可以有效定量指示岩性、孔隙度和储层特征的差异。均方根 (RMS) 和包络属性显示“FAP”油田 Telisa 地层顶部的亮点区域,而日志数据显示 Telisa 地层中存在碳氢化合物。研究区碳酸盐岩储层声阻抗值分布在15000((Ft/s)*(g/cc))~30000((Ft/s)*(g/cc))范围内。 “FAP”油田碳酸盐岩储层孔隙度为0.18~0.3(V/V),密度为2.2~2.4(g/c3)。关键词:苏门答腊盆地中部,RMS 属性,包络属性,反演
已经确定,评估矿床的储层特性的标准方法是在矿床开发的技术文档开发中积累不确定性的来源。这项工作旨在开发一种改进的方法来评估矿床的收集者特性。提议将动作算法添加到确定样品的代表性体积,构建其三维模型并进行数字化的阶段。在最后阶段,使用Minkowski函数确定样品内部孔的连通性,以提高存款开发的项目文档质量。指南来改善评估存款的收集者特性的标准方法。使用改进的方法来评估矿床的储层特性会导致不确定性的较低程度,并有助于在其开发的设计阶段形成更可靠的储层作战情况。提出的研究将对外国承包商公司的工程人员有用,因为它证明需要收集其他核心材料并设置有关存款收藏家财产的信息的质量标准。
抽象物理储层计算(RC)代表一个计算框架,可利用可编程物质的信息处理能力,从而实现具有快速学习和低训练成本的能源有效神经形态硬件。尽管自组织的回忆网络已被证明是物理储层,能够从时空输入信号中提取相关特征,但多发纳米网络为计算实施的新型策略开辟了可能性。在这项工作中,我们报告了Materia RC的实施策略,并具有自组装的回忆网络。除了显示自组织纳米线网络的时空信息处理能力外,我们还通过模拟显示,新兴的集体动力学允许RC非常规实现,其中相同的电极可以用作储层输入和输出。通过在数字识别任务上比较不同的实施策略,模拟表明,非常规实现允许降低硬件复杂性,而无需限制计算能力,从而为在Materia计算中充分利用的新见解提供了对神经形态系统合理定义的全面优势。
抽象物理储层计算(RC)代表一个计算框架,可利用可编程物质的信息处理能力,从而实现具有快速学习和低训练成本的能源有效神经形态硬件。尽管自组织的回忆网络已被证明是物理储层,能够从时空输入信号中提取相关特征,但多发纳米网络为计算实施的新型策略开辟了可能性。在这项工作中,我们报告了Materia RC的实施策略,并具有自组装的回忆网络。除了显示自组织纳米线网络的时空信息处理能力外,我们还通过模拟显示,新兴的集体动力学允许RC非常规实现,其中相同的电极可以用作储层输入和输出。通过在数字识别任务上比较不同的实施策略,模拟表明,非常规实现允许降低硬件复杂性,而无需限制计算能力,从而为在Materia计算中充分利用的新见解提供了对神经形态系统合理定义的全面优势。
基于物理的神经形态计算是当前数字技术的有前途的算法,因为其能量效率,并行性的潜力和较大的带宽。在各种体系结构中,复发性神经网络(RNN)特别适合以频度依赖性(例如音频和视频信号)处理数据[?]。但是,他们解决特定任务的监督培训通常是数据密集型的,需要调整网络的互发矩阵,这是硬件实现的挑战。储层计算(RC)提供了一个框架来通过简化训练过程来克服此问题,从本质上讲,将RNN未经训练以及在结合RNN节点的瞬时响应的输出层上使用简单的lin-1 eR-ear回归[??]。这些考虑因素通过使用七个技术平台(包括微电子学,旋转和光子学[??]。在后一类中,已经提出了各种插曲[? ]包括大规模的自由空间体系结构[???],光反馈体系结构[???]和光子集成电路[??]。这些物理系统已经在各种任务上证明了最先进的性能,包括非线性通道均衡,混乱的时间序列预测和语音识别[?]。],其中一个物理非线性反馈体系结构依赖于时间延迟储层(TDRC)方法[?
大脑电路涉及大量的反馈回路,其动力学取决于相互作用的延迟。脑启发的储层计算利用互连单元的丰富复发动力学来执行输入的任务。特别是,时间延迟储层计算使用非线性延迟反馈回路架构中的高维瞬态动力学,例如时间序列预测和语音分类。最近还证明,通过包含多个延迟的延迟分化系统的动态属性修改,以提高时间延迟储层计算的性能。在这里,我们探索了这种基本和技术重要性的这种神经启发的计算的另一个方面:在混合物中分离和预测两个信号的能力,在混合物中,每个信号由于其潜在的动力学而具有一些内在的可预测性。使用混沌输入信号混合物的多层和多层储层计算进行了说明。与独立的组件分析和相关的无监督学习技术相反,这里的上下文在于平行监督每个信号的动力学学习,以便在训练集之外预测每个信号的每个信号。此外,将混沌信号的超渗透到单个输入通道中增加了任务的难度。我们用确定性和随机系统发出的各种信号来量化和解释这种性能。此外,我们还探索了深度延迟储层计算机的体系结构。我们的发现表明,多延迟储层计算可以学习和预测两个叠加确定性信号的未来。预测(因此分离)在单层和多层时间延迟的预订计算中可能会明显更高。混合信号的带通滤波以除去较低和较高的频率,将预测提高了几%。在某些情况下,矛盾的是,增加混合物中一个混沌信号的比例实际上可以帮助学习另一个混乱信号,从而稍微改善其预测。
Hadrien Thomas,Benjamin Brigaud,Thomas Blaise,Elodie Zordan,Hermann Zeyen等。地热,2023,112,pp.102719。10.1016/j.geothermics.2023.102719。hal-04086839v2
我们考虑了由非等级三级激光器产生的两种模式光,在光力学腔中,与两种模式挤压真空储存库中的参数振荡器一起产生。使用稳态状态下的腔模式变量的期望值分析了泵模式,光学耦合强度和挤压真空储层对腔模式挤压和纠缠特性的影响。结果表明,所考虑的系统产生的两模式光显示出正交挤压和纠缠。在空腔中存在参数振荡器,并挤压真空储层可以增强腔模式灯的挤压,纠缠和平均光子数的程度。光力学腔对腔模式的平均光子数和纠缠没有影响,但增加了正交挤压的程度。
尽管可再生能源在电力部门的份额正在稳步增长,但在供热部门的份额却停滞不前,尽管在柏林,几乎一半的二氧化碳排放是由供热部门造成的。高温含水层热能存储 (HT-ATES) 能够在地下存储大量能源,同时在地面上占用的空间很小,因此特别适合用作城市地区的存储技术,因此有助于减少二氧化碳排放。然而,含水层孔隙的堵塞会降低渗透性,腐蚀和微量元素的流动可能是 HT-ATES 的不良影响。在这里,作为两项柏林 ATES 研究的一部分,对三叠纪石灰岩和侏罗纪砂岩进行了研究,目的是 (a) 通过地球化学建模模拟 HT-ATES 操作对碳酸盐含水层的影响,(b) 通过使用手持式 XRF 进行系统元素分析来识别柏林阿德勒斯霍夫新钻探勘探井的反应矿物相,以及 (c) 通过在高温下进行批量实验来估计动员过程。