精确诊断是临床医学的基石。在东亚人中,经典1型糖尿病在40岁之前诊断出的年轻糖尿病患者中并不常见,其中家族史,肥胖,β细胞和肾脏功能障碍是关键特征。年轻发作的糖尿病会影响诊所环境中患有糖尿病的五分之一的亚洲成年人;但是,它通常被错误分类,从而导致脱靶治疗。复杂的病因,较长的疾病持续时间,积极的临床过程以及缺乏循证指南,导致了这些年轻患者的可变护理标准和过早死亡。合并症的高负担,尤其是精神疾病,突出了与这个沉默的杀手有关的众多知识差距。大多数年轻糖尿病患者的大多数成年患者是作为各种诊断年龄的异质群体的一部分。由对年轻糖尿病特别感兴趣的医生领导的多学科护理团队将有助于提高诊断的精度并解决其身体,精神和行为健康。为此,付款人,计划者和提供者需要在常规实践中系统地收集和重新设计实践环境,以阐明年轻发病的糖尿病的多症,对这些易受伤害的人进行多种焦油,并改善结果。
方法:进行了两样本的孟德尔随机化,以研究肠道微生物组是否对脑脑内动脉瘤(IA),胸部主动脉瘤(TAA)和腹部主动脉瘤和腹部主动脉瘤(AAAA)和主动脉瘤的风险有因果影响。单核苷酸多态性(SNP)小于范围范围的显着性水平(1×10-5)作为仪器变量。我们使用反相反加权(IVW)测试作为因果关系评估的主要方法。MR-EGGER,加权中值,加权模式和MR多效性残留总和和离群值(MR-Presso)方法进行了敏感分析。通过错误的发现率(FDR)调整了P值,该发现率(FDR)调整了多个比较的结果,P <0.05和Q <0.1被认为是显着的因果关系。此外,P <0.05和Q> 0.1被认为是暗示性的因果效应。此外,还进行了反向MR,以排除反向因果关系的可能性。
将电转气工艺与地下天然气储存相结合,可以有效地储存多余的电力以备后用。枯竭的碳氢化合物储层可以用作储存设施,但在这种地点储存氢气的实际经验有限。这里我们展示了一项现场试验的数据,该试验在枯竭的碳氢化合物储层中储存了 119,353 立方米的氢气与天然气混合。285 天后,氢气回收率为 84.3%,表明该工艺的技术可行性。此外,我们报告称微生物介导了氢气向甲烷的转化。在研究模拟真实储层的中观宇宙的实验室实验中,氢气和二氧化碳在 357 天内的 14 个周期内可重复地转化为甲烷(0.26 mmol l −1 h −1 的释放速率)。理论上,这个速率允许在测试储层中每年生产 114,648 立方米的甲烷(相当于 ~1.08 GWh)。我们的研究证明了氢存储的效率以及在枯竭的碳氢化合物储层中进行地质甲烷化的重要性。
摘要 地质热能存储 (GeoTES) 利用地下储层来存储和调度能源,以满足可以跨越整个季节的特定需求计划。能源输入可以有多种来源/形式;在本文中,我们研究了 1) 结合太阳能热混合和使用枯竭的油气储层的 GeoTES 技术,以及 2) 结合由过剩可再生电力充电的热泵和使用低温浅层储层的 GeoTES 技术。对于每种 GeoTES 技术,我们都会对候选储层进行适用性分析,开发初步的技术经济模型,并通过选定的案例研究验证该模型。本文概述了我们在关注主题上的技术进展,旨在促进 GeoTES 技术在未来能源市场中得到更广泛的接受。
摘要:最近,人们对利用耗尽的气体和石油储层进行碳捕获和储存越来越兴趣。这一兴趣是由于许多储层已经耗尽或需要增强的石油和天然气回收率(EOR/EGR)。地下存储库中CO 2的固结是一种实现碳中立性的高效方法。此过程通过促进EOR/EGR来实现双重目的,从而帮助检索残留的油气和天然气,并同时确保CO 2的安全和永久存储,而无需泄漏的风险。注射率定义为流体在不引起岩石破裂而不引起的水库中的能力。这项研究旨在通过检查对注射率的有限考虑,特别是在耗尽的地下储层中,旨在填补碳捕获和存储(CCS)文献的空白。它审查了影响CO 2的注射率以及此类储层中某些现场病例数据的关键因素。
评估地下储层连接的方案对于整个项目生命周期的现场耗竭计划,生产历史匹配和现场管理至关重要。连通性场景受到地质特征(例如挡板和高渗透率条纹)的存在挑战,这些条纹低于地震成像的分辨率。在这里,我们提出了一种新颖的,综合的和快速的无监督的机器学习方法,用于构建具有地震分辨率的一套储层模型,这些模型与地震数据,井原木和地层概念一致。首先,我们使用称为方向扩散的良好计算机图形方法将井的日志(垂直或横向)与地震倒的Vclay和孔隙率集成在一起。我们使用无监督的机器学习方法(称为扩散概率建模(DPM))对机器学习模型进行训练。一旦受过训练,该方法就会生成一套允许的地质场景(模型),具有替代分辨率的特征,这些特征是由基于地层概念的输入训练图像指导的,并且与地震和良好的日志数据一致。以后,我们将推断的方案采样到储层模型中,该场景允许以显着改善分辨率的流量模拟。对生产模型集的储层模拟在其动态性能上显示出显着差异,尽管如此,与地震和井原木等地面真相数据保持一致。这种方法的结果通过空间有限的数据分辨率对地下储层表征产生更广泛的影响,尤其是通过添加亚观察地质特征来加速和整合储层模型的过程。
抽象的地质热能存储(GEOTES)利用地下储层可以按照给定的需求时间表存储和调度能源,这些储量可以跨越整个季节。能量输入可以是各种来源/形式的;在本文中,我们研究了1)使用太阳热杂交和使用耗尽的油/天然气储存剂的地理位置技术,以及2)用过量的可再生电力收取的热泵并使用低温浅水储藏液,用热泵进行地理位置。对于每种地理技术,我们对候选水库进行了适合分析,开发了初始的技术经济模型,并通过选定的案例研究验证模型。本文概述了我们在关注的主题方面的技术进步,并旨在促进对未来能源市场中Geotes技术的更广泛接受。
将超临界CO 2用作地热工作流体,通过将其注入地热系统,并将其从储层中循环到地球表面,以提取地热能在地热能使用否则在经济上不利于地热能的区域中开放可能性。先前的研究表明,与常规的地热系统相比,地热系统的理论效率可以翻倍,因为超临界CO 2的运动粘度明显降低,与H 2 O.这个概念通常称为CO 2 -Plume Geotermal(CPG)。它使用(最终)从CCS站点永久隔离的CO 2来a)通过产生地热功率(热和/或电动)来改善CCS系统的业务案例,b)降低了储层温度和压力,从而增加了整体CO 2的存储能力和安全性。
重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/
近年来,基于新兴的二维(2D)材料,对经济和有效数据处理的需求导致对神经形态计算的兴趣激增。作为具有许多有趣特性的上升范德华(VDW)P型Weyl半导体,Tellurium(TE)已被广泛用于高级电子/光电子。但是,从未探索过其应用程序的应用门(FG)内存设备进行信息处理。在此报道,由TE基于TE的2D VDW异质结构启用了用于多模式储层计算(RC)的电子/光电FG存储器。受到强烈的电气/光学刺激的约束,该设备表现出令人印象深刻的非挥发性电子记忆行为,包括≈108灭绝比,≈100ns开关速度,> 4000个循环,> 4000-S的保留稳定性和非挥发性稳定性和非挥发性的多端口多端口选择性选择可编程可编程特性。当输入刺激削弱时,非易失性存储器会降解为挥发性记忆。利用这些丰富的非线性动力学,这是一个多模式RC系统,具有高识别精度为90.77%的多模式系统,用于事件类型的多模式手写数字识别。