能源存储可能允许使用各种可再生能源来进行电力生产,并且更接近消费者,在某些情况下仍然存在或在与电网相关的地区居住或工作。虽然某些存储技术已经在电力领域的各种应用中使用,例如可逆的液压工厂,一些大型电池技术,但其他存储技术仍处于早期阶段的发展,并且成本和缺乏竞争力(Serra; Orlando; Orlando;Mossé,2016年)。
储层存储单元是一种模块化的高密度解决方案,是工厂建造和测试以降低项目风险,缩短时间表和削减安装成本的。储层存储单元是使用GE的电池刀片设计构建的,以实现行业领先的能源密度和最小化的占地面积。ge的专有叶片保护单元积极平衡每个电池刀片的安全性,寿命和性能,将电池寿命延长高达15%,并将故障电流降低到5倍。模块化系统具有多个安装和电缆选项,包括PAD或码头,并配置为在项目寿命中使用所有天气功能和高效冷却系统在项目寿命中最大程度地减少运营和维护(O&M)费用。
性能。它们可以通过合理的连接混合和使用。系统具有电池高能密度和超级电容器的高功率密度的优势,并且可以优化电池的工作环境。超级电容器和蓄能器的混合储能系统的应用改善了微电网的电源质量,并改善了微电网的运行稳定性和经济性。为了更好地抑制功率波动的效果,混合储能系统的容量通常很大。,但是随着混合储能系统的能力增加,其成本也会增加[5]。混合储能系统的成本与其水平效果相矛盾。因此,非常有必要在经济和合理地配置混合储能系统的能力。
摘要:电价补贴有利于微电网市场的进一步发展,为应对微电网发电成本的降低,对微电网的储能补贴成为影响其进一步发展的关键因素,因此探索建立政府对微电网储能价格的补贴机制十分必要。本文分别考虑政府补贴和微电网储能补贴的激励相容约束和参与约束,分别研究了隐藏信息和无隐藏信息的情况,建立了激励相容约束的微电网储能补贴模型,分析了“自发电+储能”模式下政府补贴与微电网储能的效率。结果表明:对于微电网用户而言,政府补贴与储能补贴之间存在逆向选择问题,在无隐藏信息的情况下,政府可以根据微电网用户不同的储能效率水平与其签订不同的合同。在信息隐匿的情况下,政府最好为不同储能效率的微网用户设计不同的激励合同菜单,这样可以保证储能效率低的微网用户继续参与微网建设,而储能效率高的微网用户可以更好地控制自发、自用和剩余电量上网的成本,更好地选择高监管的二氧化碳减排量和发电容量。
液态空气储能 (LAES) 是一种有前途的净零转换储能技术。对于使用 LAES 的微电网,市场电价会在系统内产生很大的不确定性。为了解决这个问题,信息缺口决策理论 (IGDT) 方法已被证明是一种解决系统运行不确定性的有效工具。IGDT 方法是一种旨在解决不确定性的决策工具,它可以在信息稀缺的情况下显著提高决策能力。此外,状态转换算法 (STA) 是一种利用结构学习的高度智能优化算法。本研究提出了一种新颖的 IGDT-STA 混合方法,用于解决具有 LAES 的微电网的最优运行,同时考虑市场电价的不确定性。IGDT-STA 为规避风险或承担风险的决策者提供了两种不同的策略。这些策略随后由 STA 方法优化。此外,IGDT-STA 在多代理框架内实施,以增强系统灵活性。通过案例研究发现,IGDT-STA与IGDT-遗传算法、随机方法和蒙特卡洛方法相比具有良好的性能。