氢气被用于应对气候挑战,尤其是在重型运输和工业应用等难以脱碳的应用领域,以及通过长时储能实现清洁电网,因此越来越受到人们的关注[1,2]。氢气在众多成熟领域和若干发展中应用领域中都具有巨大潜力[3]。虽然人们在交通领域的氢能和燃料电池技术研发方面已经做出了巨大努力[4-9],但人们对固定式应用的兴趣正在重新燃起。特别是大型固定式应用,它们没有像燃料电池电动汽车那样严格的限制,例如储能密度、储能系统质量和热管理,是采用氢能技术的主要候选对象[10]。然而,要想取代任何现有技术,新技术的成本和性能都至关重要。要想广泛采用氢气,生产成本是关键。为推动该领域的进步,美国能源部 (DOE) 于 2021 年宣布了“氢能计划”,这是“能源地球计划”中的第一个计划,旨在加速清洁能源解决方案的突破。“能源地球计划”的重点是将清洁氢能的生产成本在 10 年内降低 80% 至每公斤 1 美元,从而实现氢能的大规模部署 [11]。氢能可用于满足备用电源的需求,因为它具有大规模、长期和与电网解耦的储能能力。氢基技术可以提供稳定、可靠的离网电力,在停电时可快速提供并按需供电。提供应急服务的关键设施,例如医院、警察局和消防站、供水和废水处理设施以及用于支持基本公共服务的通信系统,通常依靠备用柴油发电机来确保电网断电时的持续供电。例如,供水设施需要能够维持水压以扑灭毁灭性的火灾。此外,工业区、港口和机场等未达标区域不符合主要空气污染物标准,是氢气可以解决减排问题的另一个领域。美国环境保护署 (EPA) 维护 EPA 绿色
摘要 摘要 氢气是一种低碳清洁能源,生产来源广泛,大力发展氢能产业是实现双碳目标、应对全球能源转型的重要举措。在氢能“制备—储存—运输—应用”全产业链中,氢气存储难度大一直是制约氢能产业高质量发展的因素。盐穴储氢具有成本低、规模大、安全性高、储氢纯度高等突出优势,是未来大规模储氢的重要发展方向,也是我国低碳能源转型的重大战略需求。全面调研了我国制氢产业和氢能消费现状,进一步分析了我国盐穴储氢需求,调研了国外利用盐穴储存天然气和氢气的技术和工程现状,总结了我国盐穴储氢的发展和建设历史。对比了盐穴储氢技术在天然气、氦气、压缩空气、氢气储藏中的异同,提出了我国盐穴储氢技术面临的三大科技难题:层状盐岩中的氢气渗流与生物化学反应、盐穴储氢井筒完整性控制、储氢群灾害孕育与防治,明确了储氢需求快速增长的趋势和我国大型盐穴储氢技术的重点研究方向。
摘要:可再生能源 (RES) 份额的不断增加需要有合适的储能系统来提高电网灵活性,而压缩空气储能 (CAES) 系统可能是一个有前途的选择。本研究提出并分析了一种无二氧化碳的非绝热 CAES 系统。该工厂配置源自 McIntosh 非绝热 CAES 工厂的缩小版,其中天然气被绿色氢气取代,由光伏发电厂供电的质子交换膜电解器现场生产。在本研究中,氢气生产系统组件的尺寸设计为最大化光伏能源发电的自耗份额,并逐年分析设计参数对 H 2 -CAES 工厂性能的影响。此外,还讨论了天然气和氢气在能源消耗和二氧化碳排放方面的比较。结果表明,通过利用所有光伏能源生产,拟议的氢燃料 CAES 可以有效匹配发电情况和天然气燃料电厂的年产量,同时实现零二氧化碳排放。
利用太阳能制氢是获取氢能的重要途径,但太阳能固有的间歇性、随机性特性降低了制氢效率,因此需要在光伏发电制氢系统中增加储能系统。本文建立光伏发电制氢系统模型并进行容量配置优化。首先对数学模型进行建模分析,利用Matlab/Simulink对系统建模;其次分析储能容量优化配置原理,确定优化策略,提出基于低通滤波原理的储能容量配置算法,并进行最优时间常数的选取;最后以光伏装机容量为30 MW的光伏发电为例,验证了所提算法的有效性,分析了储能容量与平滑效果之间的关系。结果表明:随着截止频率的减小,储能容量增大,平滑效果越明显;所提算法能有效降低光伏发电1 h最大功率变化量,其中平滑前光伏发电1 h最大功率变化量为4.31 MW;设置四组不同的时间常数,平滑后光伏发电1 h最大功率变化量分别降至0.751、0.389、0.078、0.04 MW。
I. * J. Andersson 和 S. Grönkvist,“大规模氢气储存”,《国际氢能杂志》,第 44 卷,第 23 期,第 11901-11919 节,2019 年。II. J. Andersson、A. Krüger 和 S. Grönkvist,“甲醇作为无化石燃料直接还原铁生产中氢和碳的载体”,《能源转换与管理:X》,第 7 卷,第 100051 期,2020 年。III. A. Krüger、J Andersson、S. Grönkvist 和 A. Cornell,“水电解集成用于无化石燃料钢铁生产”,《国际氢能杂志》,第 45 卷,第 55 期,第 29966-29977 节,2020 年。IV. J. Andersson,“液态氢载体在氢炼钢中的应用”,《能源》,第 14 卷,第 5 期,第 1392 节,2021 年。VJ Andersson 和 S. Grönkvist,“无化石直接还原铁工艺中两种储氢方法的比较”,《国际氢能杂志》,第 46 卷,第 56 期,第 28657-28674 节,2021 年。VI. J. Andersson 和 S. Grönkvist,“通过联产甲醇提高无化石炼钢的经济性”,已提交给《清洁生产杂志》。
摘要 :风能的随机性与波动性给风电并网带来巨大挑战,基于电解池制氢与超级电容的混合储能技术成为平抑风电功率波动的有效途径。在建立并网型风氢耦合系统工作特性约束和混合储能系统初始投资成本最小的基础上,提出了基于低通滤波-波动观测的碱性电解池-超级电容混合储能配置方法,并制定了基于超级电容SOC(荷电状态)的混合储能协调控制策略。实例研究结果表明,本文提出的混合储能系统配置方法及控制策略有效,可降低风电并网功率波动,满足并网标准。
摘要:近年来随着可再生能源发电技术的不断发展,分布式电源(DG)的使用比例过大导致配电网稳定性下降,同时传统配电网运行模式无法保持源荷平衡,而有源配电网(ADN)的运行模式可以有效减缓DG比例过高导致的运行稳定性下降。因此,本文提出了一种考虑需求响应(DR)的ADN电氢混合储能系统(ESS)规划双层模型。上层以负荷波动最小、用户购电成本满意度最大、用户舒适度最高为目标;基于电价弹性矩阵模型,得到下层ESS规划的最优电价制定策略;在下层,以ESS全寿命周期成本(LCC)、ADN电压波动、负荷波动最小为目标,得到最优ESS规划方案。最后采用MOPSO算法对模型进行测试,并通过扩展的IEEE-33节点测试系统验证了所提方法的正确性,仿真结果表明电压波动降低了62.13%,负荷波动降低了37.06%。
摘要:为了应对气候变化和全球平均气温上升导致的能源转型,光伏 (PV) 转换似乎是阳光充足地区的一种有前途的技术。然而,光伏发电与天气条件和昼夜循环直接相关,这使其具有间歇性和随机性。因此,将其与储能系统 (ESS) 相结合以确保非互联微电网的长期能源供应是有意义的。在所有技术解决方案中,可再生能源生产的电解氢似乎是一个有趣的候选者。在此背景下,本文提出了一种专用于微电网中氢存储集成的控制策略,以更好地利用光伏发电。目标是根据系统状态和光伏生产间歇性,优化质子交换膜燃料电池 (FC)、碱性电解器 (El)、锂离子电池储能系统 (BESS) 和光伏的微电网管理。首先,开发基于分布式显式模型预测控制 (DeMPC) 的控制策略,以定义 FC、EL 和电池的电流参考。其次,在仿真中验证控制策略的性能,并在电源硬件在环测试台上确认。
摘要 预计到 2050 年,氢能在经济和实现气候中和的过程中发挥重要作用。要优化其使用,首先需要开发一个高效的存储系统。在生产过剩时期,以可再生能源生产的氢气形式储存能源的本质是为了在能源需求旺盛时期重新利用所储存的能源。储存的氢气还可以用于经济的许多领域,例如化工、炼油和运输行业。本文讨论了波兰大规模储存绿色氢的可能性。研究了地下储氢、液氢储氢、氨储氢以及利用天然气网络进行储氢的潜力。