摘要:可再生能源整合已成为配电系统不可或缺的一部分。风能和太阳能渗透率高的能量存储设备正成为支持由于可再生能源电力间歇性而导致的功率不匹配的关键部件。可再生能源以及存储设备需要最佳放置,以确保配电系统高效运行。本文分析了电池储能以及分布式发电 (DG) 在混合配电系统中的影响。本文的主要贡献是:(i) 使用组合功率损耗灵敏度指数对 DG 进行最佳选址和定型,(ii) 基于组合功率调度策略对电池储能进行最佳位置和定型,(iii) 最小化系统的总功率损耗和燃料成本。计算了充电和放电期间的电压曲线、燃料成本、电池安装成本、电池存储大小和电池能量。针对 IEEE-33 总线测试系统获得了结果,并与文献中现有的方法进行了比较。使用通用代数建模系统 (GAMS) 和 MATLAB 接口解决了优化问题。关键词:径向配电系统、可再生能源、电池储能装置、损耗最小化、最佳尺寸和位置选择。,
MICROELECTRONICS PTE. LTD. 董事。 2020 年 12 月 25 日起至今担任公司运营
在集成电路制造过程中,晶圆表面状态及洁净度是影响晶圆良率和器件质量与可靠性的最重要因素之一,化学机械抛光 ( CMP )、湿法清洗、刻蚀、电化学沉积(电镀)等表面技术扮演重要的作用。公司围绕液体与固体衬底表面的微观处理 技术和高端化学品配方核心技术,专注于芯片制造过程中工艺与材料的最佳解决方案,成功搭建了 “ 化学机械抛光液 - 全品类 产品矩阵 ” 、 “ 功能性湿电子化学品 - 领先技术节点多产品线布局 ” 、 “ 电镀液及其添加剂 - 强化及提升电镀高端产品系列战略供 应 ” 三大核心技术平台。
香港交易及结算所有限公司、香港联合交易所有限公司及香港中央结算有限公司对本招股说明书的内容概不负责,对其准确性或完整性不发表任何声明,并明确表示,对于因本招股说明书全部或部分内容而产生或因依赖该等内容而引致的任何损失,概不负责。本招股说明书的副本连同“附录六 — 交付公司注册处处长并可供查阅的文件”所载文件,已根据《公司(清盘及杂项条文)条例》(香港法例第 32 章)第 38D 条的规定,由香港公司注册处处长登记。香港证券及期货事务监察委员会及香港公司注册处处长对本招股说明书或上述任何其他文件的内容概不负责。发售价预期由联席全球协调人(代表其本身及承销商)与本公司于定价日期协商确定,定价日期预期为 2020 年 10 月 16 日(星期五)或前后,且无论如何不迟于 2020 年 10 月 22 日(星期四)。发售价将不会超过每股发售股份 13.70 港元,且预期将不低于每股发售股份 12.10 港元。香港发售股份申请人于申请时须就每股香港发售股份支付最高发售价每股发售股份 13.70 港元,连同 1% 经纪佣金、0.0027% 证监会交易征费及 0.005% 联交所交易费,如最终确定的发售价低于每股发售股份 13.70 港元,则该等费用可予退还。联席全球协调人(为其自身及代表承销商)可在其认为适当的情况下并经本公司同意,于香港公开发售申请截止日期前的任何时间减少本招股章程所载香港发售股份数目及╱或指示性发售价范围。在此情况下,减少香港发售股份数目及╱或指示性发售价范围的通知将不迟于香港公开发售申请截止日期前在香港联交所网站www.hkexnews.hk及本公司网站www.simcere.com上刊登。更多详情请参阅“全球发售的架构”及“如何申请香港发售股份”。发售股份并无且不会根据美国证券法或美国任何州证券法登记,且不得在美国境内发售、出售、质押或转让,除非根据美国证券法的豁免或不受其登记要求约束的交易。发售股份仅于(i)根据美国证券法第144A条或其他豁免注册规定在美国境内向合资格机构买家发售及出售,及(ii)根据S规例在美国境外进行离岸交易。在作出投资决定前,有意投资者应仔细考虑本招股章程所载的所有资料,包括“风险因素”所载的风险因素。如在上市日期上午8时正前出现若干理由,联席全球协调人(为其本身及代表承销商)可终止香港承销商根据香港承销协议所承担的义务。该等理由载于“承销”。
图2 利用基因组编辑技术建立疾病模型的研究a:利用源自患有遗传性疾病患者的疾病特异性iPS细胞株,利用基因组编辑技术建立基因修复型iPS细胞株。通过比较两种菌株的受影响细胞类型,我们将分析病理并发现治疗药物。将来,还有望进行通过移植修复型iPS细胞系诱导分化的细胞的基因治疗(细胞治疗)。 b:利用基因组编辑技术将基因突变引入来自健康个体的iPS细胞系,以建立针对疾病的iPS细胞系。通过比较两种菌株的受影响细胞类型,我们将分析病理并发现治疗药物。
中苏门答腊盆地是一个具有巨大石油和天然气潜力的沉积盆地。利用这一潜力所做的努力之一是利用地震方法进行地球物理勘探。地震方法是提供地球地下状况(例如层结构、地质结构、碳氢化合物指标以及储层的物理性质)清晰图像的最优秀方法。本研究采用了地震反演方法和地震属性方法。使用的地震属性是均方根 (RMS) 和包络属性。同时,所采用的地震反演是声阻抗反演(AI)。 RMS 和包络属性有助于绘制地震波的最大振幅,这些地震波反映了地表以下的密度或岩性差异,并指示了具有储层潜力的区域的存在。声阻抗反演可以绘制某一层的声阻抗值,可以有效定量指示岩性、孔隙度和储层特征的差异。均方根 (RMS) 和包络属性显示“FAP”油田 Telisa 地层顶部的亮点区域,而日志数据显示 Telisa 地层中存在碳氢化合物。研究区碳酸盐岩储层声阻抗值分布在15000((Ft/s)*(g/cc))~30000((Ft/s)*(g/cc))范围内。 “FAP”油田碳酸盐岩储层孔隙度为0.18~0.3(V/V),密度为2.2~2.4(g/c3)。关键词:苏门答腊盆地中部,RMS 属性,包络属性,反演
摘要:地下储氢已被公认为储存大量氢气的关键技术,有助于氢经济的工业规模应用。然而,人们对地下储氢的了解甚少,导致项目风险很高。因此,本研究考察了盖层可用性和氢气注入率对氢气回收率和氢气泄漏率的影响,以解决与地下储氢有关的一些基本问题。建立了三维非均质储层模型,并利用该模型分析了盖层和氢气注入率对氢气地下储存效率的影响。结果表明,盖层和注入率对氢气泄漏以及捕获和回收的氢气量都有重要影响。结论是,当没有盖层时,较高的注入率会增加氢气泄漏。此外,较低的注入率和盖层可用性会增加回收的氢气量。因此,这项工作为地下储氢项目评估提供了基本信息,并支持能源供应链的脱碳。
基于物理的神经形态计算是当前数字技术的有前途的算法,因为其能量效率,并行性的潜力和较大的带宽。在各种体系结构中,复发性神经网络(RNN)特别适合以频度依赖性(例如音频和视频信号)处理数据[?]。但是,他们解决特定任务的监督培训通常是数据密集型的,需要调整网络的互发矩阵,这是硬件实现的挑战。储层计算(RC)提供了一个框架来通过简化训练过程来克服此问题,从本质上讲,将RNN未经训练以及在结合RNN节点的瞬时响应的输出层上使用简单的lin-1 eR-ear回归[??]。这些考虑因素通过使用七个技术平台(包括微电子学,旋转和光子学[??]。在后一类中,已经提出了各种插曲[? ]包括大规模的自由空间体系结构[???],光反馈体系结构[???]和光子集成电路[??]。这些物理系统已经在各种任务上证明了最先进的性能,包括非线性通道均衡,混乱的时间序列预测和语音识别[?]。],其中一个物理非线性反馈体系结构依赖于时间延迟储层(TDRC)方法[?
2020 年,美国能源部 (USDOE) 提出了一项以储能为重点的重大挑战,这是该机构首次提出的综合性方法。[1] 鉴于锂离子电池技术在解决短储能时长(<4 小时)方面取得的成功,[2] 储能研究的重点已转向长储能方法,这种方法倾向于将电力和能源分离以实现灵活的电网安装。液氢载体是一种可以利用现有基础设施并利用质子交换膜 (PEM) 燃料电池的高效率/成熟度在需要时释放储存能量的方法。[3] 为此,我们专注于肼 (N2H4),它含有 12.5% 的 H2(重量),已被纳入燃料电池应用。[4,5] 虽然 N2H4 可以通过多种工艺在工业上生产,但它通常是通过 NH3 的氧化制成的,而 NH3 目前的基础设施和碳足迹相当可观。[6] 如果
我们的绿铁和钢制野心需要长期的协调策略。它从Whyalla Steelworks的完整转换开始,从安装低发射电弧炉开始。南澳大利亚州政府的承诺为5000万美元和来自英联邦的6320万美元的额外承诺,将使直接CO 2排放量减少多达90%。转型将使钢铁生产能力从每年一百万吨(MTPA)增加到1.5 MPTA并保护3,000个工作岗位。
