为了减轻二氧化碳过度发射引起的当前环境问题和气候变化,需要重新依靠依赖于非可重复燃料的传统能源系统。将二氧化碳转换为电解层中的增值化学物质,这是一个有希望的途径,向碳净零零的未来。但是,在当前阶段,二氧化碳减少反应(CO2RR)仍然面临重大挑战,例如产品选择性不令人满意,能源效率低,长期稳定性等,阻碍了CO2RR技术的工业化和大规模应用。本材料特刊的目的是提出一系列综合主题,通过增强对材料科学的基本理解来推动与CO2RR相关的技术。研究重点是新型催化剂设计,合成和表征以及将材料整合到实用的二氧化碳转换系统中。也鼓励提交针对其他关键组件的提交,例如膜,电解质,阳极等。
摘要 rRNA、tRNA、mRNA和非编码RNA等不同类型RNA的转录后调控广泛参与生理和疾病的发生发展。mRNA作为基因与蛋白质之间的中间产物,其可变剪接、可变多聚腺苷酸化和修饰等转录后调控影响其编码蛋白的表达和功能。然而,由于缺乏合适的RNA工程平台,RNA转录后调控的功能意义和治疗潜力尚未得到充分研究。2015年一种特异性靶向RNA模板的新型CRISPR-Cas系统CRISPR-Cas13的发现,赋予了CRISPR以高特异性靶向和编辑RNA的新作用,在一定程度上开启了RNA操作的新时代。本综述将总结催化无活性的CRISPR-Cas13系统(CRISPR-dCas13)在mRNA工程中的新兴应用,并强调CRISPR-dCas13系统在其他RNA修饰调控中的前景及其治疗潜力。
从头开始设计高效酶的能力将对化学、生物技术和医学产生深远的影响。过去十年来,蛋白质工程的快速发展让我们乐观地认为,这一目标触手可及。含有金属辅因子和非典型有机催化基团的人工酶的开发表明,如何优化蛋白质结构以利用非蛋白质元素的反应性。与此同时,计算方法已用于根据过渡态稳定的基本原理设计用于各种反应的蛋白质催化剂。尽管设计的催化剂的活性很低,但已使用广泛的实验室发展来生成高效的酶。这些系统的结构分析揭示了设计活性更高的催化剂所需的高精度。为此,新兴的蛋白质设计方法(包括深度学习)特别有望提高模型准确性。在这里,我们总结了该领域的关键发展,并强调了新的创新机会,这些机会应该使我们能够超越当前的技术水平,并实现稳健的生物催化剂设计以满足社会需求。
摘要:在2011年,出现了一种新型的超链连接聚合物(HCP),称为编织芳香聚合物(KAPS),其特征是它们具有非凡的化学和热稳定性,其孔隙率特性,尤其是其合成的简单性,其合成的简单性是基于以前的芳族单体的结合而没有任何均可进行的。下一个逻辑步骤是将金属掺入这些网络中,以支持不同的可溶性分子催化剂或金属纳米颗粒(NPS)。因此,在过去的十年中,含金属KAP的数量逐渐增长,我们认为,在报告的第一个KAPS诞辰10周年中,对所有含金属的KAP的审查及其在异质金属催化剂中的应用是强制性的。在本综述中,总结所有包含金属的KAP的最相关特征,分为两个大组,分为金属络合物或金属NP,并根据金属掺入的类型进行分类。最后,根据每个研究的反应中使用的金属进行比较,并评论了这些类型的材料的未来目标。
催化对未来的潜在影响仅在化学工业中,到 2050 年,与“一切照旧”的情况相比,催化剂和相关工艺的改进每年可以节省多达 13 艾焦耳的能源和 1 千兆吨二氧化碳当量。*
Yugo R. Kamimura、Kenzo Yamatsugu、Tomoya Kujirai、Hitoshi Kurumizaka、Atsushi Iwama、Atsushi Kaneda、Shigehiro A. Kawashima *、Motomu Kanai * DOI:10.1038/s41467-025-56204-2 URL:https://doi.org/10.1038/s41467-025-56204-2 注释(禁运信息) 禁止在 1 月 24 日日本时间晚上 7 点(英国时间 24 日上午 10 点)之前出版。 这项研究得到了以下赠款的支持:科学研究的授予(项目编号:23H05466,23H05475),科学研究B(项目编号:21H02074),学术变革性研究A(项目编号:24H02328),学术变革研究b(项目编号:22H050501018),挑战7(PISPICT), (项目编号:21K19326,22K19553),年轻科学家研究(项目编号:22K15033),研究活动启动支持(项目编号:23K19423),AMED,AMED(项目编号:24AMA121009,21CM0106510H0006),JST-ERATO(JST-ERATO)(JST-ERATO)(JST-ERATO)(JST-ERATO)(JST-ERATO编号:JPMJERST和JPMJESS),和JPMJES119011901190119011901190119019019019019019019019019001900号。 (项目编号:JPMJCR24T3)、IAAR 研究支持计划、朝日硝子基金会研究补助金、武田科学基金会研究补助金以及持田纪念医学和制药科学基金会研究补助金。 术语表(注1) 催化剂:能促进特定化学反应但自身不发生改变的分子。通过反复作用,可以使用少量的催化剂来生产大量所需的产品。 (注2)表观遗传学:通过化学修饰DNA或蛋白质而不改变DNA碱基序列来控制基因表达的机制。遗传信息以基因组的形式表达,而化学修饰的信息则称为表观基因组。 (注3)乙酰化:在蛋白质的赖氨酸残基上的氨基(-NH2)上引入乙酰基(-COCH3)的反应。 (注4)翻译后修饰:蛋白质在细胞中合成后添加的各种化学修饰。它参与调节蛋白质活性、稳定性和定位。
摘要 铂被广泛用作混合硫 (HyS) 循环中氢气生产的首选催化剂。在此循环中,水 (H 2 O) 和二氧化硫 (SO 2 ) 反应生成硫酸和氢气。然而,铂对 H 2 O 和 SO 2 的表面反应性尚未完全了解,尤其是考虑到表面上可能发生的竞争吸附。在本研究中,我们进行了密度泛函理论计算和长程色散校正 [DFT-D3-(BJ)],以研究 H 2 O 和 SO 2 对 Pt (001)、(011) 和 (111) 表面的竞争效应。比较单个H 2 O分子在不同Pt表面的吸附情况,发现H 2 O在(001)表面的解离吸附能最低(E ads = –1.758 eV),其次是(011)表面(E ads = –0.699 eV)和(111)表面(E ads = –0.464 eV)。对于SO 2 分子的吸附,趋势类似,在(001)表面的吸附能最低(E ads = –2.471 eV),其次是(011)表面(E ads = –2.390 eV)和(111)表面(E ads = –1.852 eV)。因此,在H 2 O和SO 2 竞争吸附时,SO 2 分子会优先吸附到Pt表面。如果SO 2 浓度增加,两个相邻的SO 2 分子之间可能会发生自反应,导致表面形成一氧化硫(SO)和三氧化硫(SO 3 ),这可能导致Pt催化表面硫中毒。
1化学研究所和纳米科学和纳米技术中心,希伯来耶路撒冷大学,耶路撒冷,91904,以色列2化学系 - Ångström实验室,Ångström实验室,UPPSALA大学,乌普萨拉大学,第523箱,SE-75120 UPPSALA,SWEDEN 3. 3PU, United Kingdom 4 Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom 5 Department of Chemistry, Northwestern University, Evanston, IL 60208, United States of America 6 Division of Chemistry and Chemical Engineering, and Beckman Institute, 210 Noyes Laboratory, 127-72 California Institute of Technology, Pasadena, CA 91125, United States of America 7美国北卡罗来纳大学,美国美国化学系教堂山8号国家可再生能源实验室,美国9号科罗拉多大学,科罗拉多大学,科罗拉多大学,科罗拉多大学,科罗拉多州,科罗拉多州,美国80309,美国化学系10,美国牛津大学,牛津大学,牛津大学,牛津大学,英国牛津大学,英国牛津大学,美国耶鲁大学。
自 20 世纪 70 年代初以来,选择性催化还原 (SCR) 已应用于固定源、化石燃料燃烧装置的排放控制,目前已在日本、欧洲和美国投入使用。该技术已应用于大型(2.5 亿美元英热单位/小时 (MMbtu/hr))公用事业和工业锅炉、工艺加热器和联合循环燃气轮机。SCR 在其他燃烧设备和工艺中的应用有限,例如简单循环燃气轮机、固定往复式内燃机、硝酸厂和钢厂退火炉 [4]。在美国,SCR 主要应用于燃煤和天然气发电锅炉,规模从 250 到 8,000 MMbtu/小时(25 到 800 兆瓦 (MW))。SCR 可以作为独立的 NOx 控制装置使用,也可以与其他技术(如燃烧控制)一起使用。SCR 系统很少出现运行或维护问题 [1]。
AMO 与其他 EERE 技术办公室合作,提供专业知识以解决制造挑战和问题。包括:• 车辆计划 - 能源存储、材料• 生物能源计划 - DOE 塑料• 燃料电池 - H2@Scale 计划旨在增加氢气的生产和使用• 燃料电池、车辆和风能计划 - 碳纤维和复合材料
