1. 简介在电解装置中,由于 OER 位点不活跃以及材料电导率低,催化剂层会导致电解器整体运行中的损耗。[1,2] 为了实现下一代廉价 OER 电解器催化剂,催化剂本身必须具有导电性,在工作条件下具有机械和化学稳定性,具有较高的电化学表面积,并含有高浓度的活性位点以释放 O 2 。迄今为止,质子交换膜 (PEM) 和碱性阴离子交换膜 (AAEM) 水电解还未实现这一点。制造具有所有这些特性的催化剂的一种方法是将具有这些特性的不同材料本质上结合起来,制成一种“超级”催化剂。
摘要:催化剂层(CLS)的多尺度设计对于将氢电化学转换设备推向商业化部署很重要,但是,多尺度CL组件之间的复杂相互作用,高合成成本和庞大的设计空间,这一数字受到了极大的阻碍。我们缺乏能够准确反映纳米结构 - 性能关系并有效地搜索设计空间的理性设计和优化技术。在这里,我们用深层的人工智能(AI)框架填补了这一空白,该框架集成了最近的生成AI,数据驱动的替代技术和集体智能,以有效地搜索由其电化学性能驱动的最佳CL纳米结构。Glider通过利用量化量化矢量自动编码器的维度降低能力来实现现实的多尺度数字发电。滑翔机的强大生成能力可以有效搜索CLS的PT碳 - 离子体纳米结构的最佳设计参数。我们还证明滑翔机可以转移到其他燃料电池电极微结构产生,例如纤维气体扩散层和固体氧化物燃料电池阳极。滑翔机作为设计和优化广泛的电化学设备的数字工具。关键字:燃料电池,生成人工智能,多尺度设计,多物理,催化剂层
应力测试是开发出,该测试的重点是质子交换膜电解的阳极催化剂层降解,这是由于模拟的起步操作而引起的。ex exte测试表明,由于近表面还原和循环到高电位时,重复的氧化还原循环会加速催化剂溶解。相似的结果发生在原位,其中发现细胞动力学(> 70%),虹膜从阳极催化剂层迁移到膜中。但是,观察到其他过程,包括虹膜氧化的变化,较薄和更密集的催化剂层的形成以及从运输层迁移的铂。还发现了增加的界面弱化,通过增加催化剂层的接触电阻和分离部分,从而增加了欧姆和动力学损失。反复的水流关闭进一步加速性能损失,并增加界面和催化剂层内的撕裂和分层的频率。这些测试应用于几种商业催化剂,在其中观察到含有钌或高金属含量的催化剂的损失率更高。这些结果表明有必要了解如何发生操作停止,以确定损失机制的加速方式以及制定限制绩效损失的策略。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad2bea]这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。
W 窑 cm -2 曰 持续增加到 2.0 bar 袁 功率密度进一步提升 达到 0.94 W 窑 cm -2 ( 图 4E). Chen 等 [47] 报道 Co-N-C 催化剂在空气的燃料电池测试中压力从 0.5 bar 提 升至 2 bar 上 袁 最高功率密度从 0.221 W 窑 cm -2 提升 到 0.305 W 窑 cm -2 ( 图 4F). 文献中记录的非贵金属催 化剂燃料电池测试压力一般不大于 2 bar 袁 在此范 围内催化剂燃料电池的性能随着压力的增加而提 升 袁 压力过大会造成催化剂层结构的破坏并加速 膜电极的退化 . 目前 袁 鲜有对测试过程中气流量影 响的探究 . 从表 1 中发现 袁 大部分基于非贵金属催 化剂的 PEMFC 性能测试是采取固定气流量的方 式 袁 但气流量的选择并没有统一标准 袁 其中空气的 气流量一般等于或大于氧气的气流量 . 4 非贵金属催化剂耐久性分析
摘要:太阳能驱动的二氧化碳还原是合成燃料和化学品的碳中性途径。我们在此报告使用光伏电池直接供电的气体扩散电极 (GDE) 进行太阳能驱动的 CO 2 还原的结果。GaInP/GaInAs/Ge 三结光伏电池用于为采用 Ag 纳米颗粒催化剂层的反向组装气体扩散电极供电。在 1 个太阳的模拟 AM 1.5G 照明下,该装置的太阳能到 CO 能量转换效率为 19.1%。使用反向组装 GDE 可防止催化剂床从湿润转变为充满,并使装置稳定运行 >150 小时而没有效率损失。在加利福尼亚州帕萨迪纳市的环境太阳光照下进行了户外测量,结果显示太阳能转化为二氧化碳的峰值效率为 18.7%,二氧化碳生成率为每天 47 毫克·厘米 −2,日平均太阳能转化为燃料的效率为 5.8%。
摘要:可充电锌空气电池 (ZAB) 具有高理论能量密度、高电池电压和环境友好性,可在向更清洁、更可持续的能源系统过渡中发挥重要作用。ZAB 的空气阴极是预测电池整体性能的主要决定因素,因为它分别负责在放电和充电过程中催化氧还原反应 (ORR) 和氧释放反应 (OER)。在本研究中,使用基准双功能氧电催化剂 (Pt/C-RuO 2 ) 对空气阴极的结构进行了详细的优化研究。根据商用气体扩散层 (GDL) 的选择、热压催化剂层 (CL) 的影响以及集电器的最佳孔径优化了空气阴极的组成和结构。本研究中的最佳阴极显示最大功率密度(PD max)为167 mW/cm 2 ,往返效率和电压间隙(E gap )分别为59.8%和0.78 V,表明本研究中提出的空气阴极制备方法是提高ZAB整体性能的一种有前途的策略。
X射线光电子光谱(XPS)是一种用于研究聚合物电解质膜燃料电池和电解剂中催化剂的表面特性和组成的常用技术。XPS分析催化剂层(CLS)越来越多地使用催化剂和支持组成和结构之间的关系,催化剂墨水组成,CL制造方法和参数以及它们的性能和耐用性。基于IR的CLS的表征由于多种因素,包括对IR 4F光谱的解释,O 1S光谱中的催化剂和离子体物种的解释以及离子体对X射线损伤的敏感性,这会导致催化剂ionomer界面的变化,通常比样本之间的差异更大。本研究报告了一种详细的XPS表征的方法,基于IR的CL,建立定量指标,并提供有关催化剂离子体界面的见解,该界面可以与多种处理和性能指标相关。具体来说,我们已经评估了使用几种常见CL涂层方法制备的CL中的表面组成差异。我们还研究了用不同的催化剂负荷和电化学测试后选定样品制备的CL。通常,我们发现了元素比和从O 1S光谱的详细分析得出的趋势的良好协议。此外,O 1S分析揭示了催化剂组成的差异,解决了与IR 4F光谱解释有关的一些挑战和局限性。
Jan Torgersen是NTNU机械工程学的教授,其研究重点是材料形状及其功能之间的相互作用。Torgersen向我们讲了他在NTNU的生活和工作以及他对更清洁星球的愿景。您的电极项目刚刚获得了150万欧元(诺克1600万欧元)的ERC赠款。该项目的目的是什么?响应用化石燃料的能源需求升高意味着发射另一个发电站。但可再生能源的产生不是这种灵活的,因此我们需要更好的方法来存储能量以符合供求。我们正在研究可以帮助解决此问题的燃料电池,电解器和流气口。在这些设备中,需要在催化剂层上分布燃料,以将其化学能转换为电能以存储,反之亦然。赠款是关于研究燃料是如何通过设备分配的,以及在旅途中损失的能源 - 所谓的大众传播限制 - 以及如何最大程度地减少这些损失。我们建议我们采用基于3D打印的导电微结构的新技术。这种技术有什么不同?我们创建一个过程,在该过程中,直接从计算机模型中创建了化学稳定和导电材料的有序结构。在制造燃料电池所需的尺度上,这是不可能的。到目前为止,由于无法生产燃料电池的电极的最佳设计。我们想在计算机上设计一种传输机构并将其转移到物理原型中。有一个共同的线程吗?您以前关于生物植入物的工作似乎与储能相去甚远。来自我们3D打印机的高分辨率方面。它可以在许多方面模仿细胞外基质(围绕我们组织中细胞的支架)。像电化学装置一样,组织工程支架需要优化液体的流动。在组织中,那是携带营养的体液。我们的3D打印平台是一个工具箱,可以跨越这些长度尺度。我认为我们有其他人没有的可能性。
东丽德国子公司将建设第二家工厂,生产氢燃料电池和水电解器的关键部件 日本东京,2020 年 3 月 3 日——东丽工业公司今天宣布,德国子公司 Greenerity GmbH 前一天为其第二家工厂举行了奠基仪式。新工厂将位于巴伐利亚州阿尔策瑙的一个工业区,距离哈瑙西南约 10 公里。该公司开发、制造和销售氢燃料电池的部件。新工厂计划于 2021 年 11 月投产。新工厂将安装设备以高效生产催化剂涂层膜和膜电极组件,它们是氢燃料电池的关键部件(见术语表注释 1)。一旦满负荷运行,两种产品的总年产量估计将达到 1000 万台。这一水平将满足约 80,000 辆配备增程器的送货车的需求。世界各国纷纷出台法规和标准,作为政策和立法举措的一部分,以减少汽油、柴油和其他内燃机车辆的二氧化碳排放。这些举措旨在应对全球变暖,符合联合国的《巴黎协定》(术语注 2)和《可持续发展目标》(术语注 3)。欧洲和中国的主要一级供应商和汽车制造商已进入公交车、卡车、送货车和其他商用车的增程器领域,以及燃料电池汽车(术语注 4)(包括乘用车)的氢燃料电池领域。因此,Greenerity 将通过新工厂扩大产能,从而满足未来几年对催化剂涂层膜和膜电极组件的激增需求。东丽集团提供用于氢和燃料电池应用的材料和部件,例如高强度碳纤维、预浸料(参见术语表注释 5)、用于高压氢气罐的具有良好抗氢脆性的衬里树脂、气体扩散层、催化剂层和碳氢化合物基电解质膜,这些膜在高温下具有良好的耐久性,并且气体渗透性低,非常适合氢燃料电池以及水电解和氢压缩应用。2015 年,东丽收购了 Greenerity,以获取后者的催化剂涂层膜和膜电极组件设计技术,并将其与自己的相关材料技术相结合,以扩大作为制造和销售基地的业务。东丽将在未来几年通过这种关系加强努力,为创建低碳氢社会做出贡献。东丽集团的使命是通过平衡发展和可持续性与创新理念,提供创新技术和先进材料,为世界挑战提供真正的解决方案,