ETES 有望成为用于产生低碳工业热能的技术组合的一部分。氢热尚未实现商业化,预计由于氢气生产过程中的能量损失,其成本将远高于 ETES。热泵将电能转化为热能的能源效率高于 ETES(热泵的效率为 200%-300%,而 ETES 的效率为 90%-95%),因此通常比 ETES 更具成本竞争力。然而,热泵可能需要进行大量的现场改造,而且热泵目前还无法达到 200ºC 以上的温度,而超过一半的工业热能需求是 200ºC 以上的温度。3 电锅炉可以提供与目前基于 ETES 的锅炉相同的温度。随着两种技术的进一步发展,未来的电炉预计将能够达到与未来 ETES 系统类似的温度水平(1,000ºC 以上)。然而,热泵、电锅炉和电炉等不灵活的基本负荷需求需要额外的投资(无论是在电网还是在现场存储方面),才能将可再生能源的间歇性电力转化为连续电力。
摘要。催化冷凝器稳定电荷在高K介电膜的任一侧,以调节催化层的电子状态,以用于对表面反应的电子控制。在这里,碳溅射提供了用于快速,大规模制造的工业应用所需的金属碳催化冷凝器。碳膜在HFO 2介电/P型Si上被溅射,其厚度不同(1、3、6、10 nm),并且在400°C下热处理后碳厚度增加后,观察到电导率和碳膜电容的增强。在PT沉积在碳膜上后,PT催化冷凝器的高电容率为〜210 nf/cm 2,其频率约为1,000 Hz,满足了动态催化剂以实现催化催化剂的需求。温度编程的一氧化碳的解吸产生的CO吸收峰在温度下移动,其电势施加在冷凝器(-6 V或6 +V)(-6 V或6 +V)上,表明PT冷凝器表面上碳一氧化碳的结合能的变化。在400°C的升高温度下观察到电容(约2,000 nf/cm 2)的电容(约2,000 nf/cm 2),当应用10 V电势时,每个金属原子的电荷约为10%。42 cm 2面积PT/C/HFO 2/Si的大型催化冷凝器表现出9,393 NF的高电容,泄漏电流/电容电流比(<0.1)低,表明了宽敞的金属制造方法,用于金属型碳酸金属型制度型持久性。
•多粒核石墨是一种合成的复合材料,该复合材料是通过成型或挤出由煤焦油沥青或石油焦炭填充剂制成的糊状物和螺旋粘合剂的糊状物,然后进行热处理和重新爆炸以致密化。
尽管这种方法在污染物的去除效率方面具有有效性,但藻类 - 细菌颗粒在去除病原体中的效率尚未得到充分探索。世界卫生组织(WHO)指南认识到通过水资源和农业再利用,致病性微生物对疾病传播产生的关键影响。肠球菌属。和大肠杆菌通常用作水资源中以及农业和水产养殖水资源中的粪便污染指标。5然而,它们可能不是肠道病毒存在的足够指标,而肠道病毒的存在比细菌更容易容忍治疗过程。6个凸侧,特别是体细胞和特异性副凸,已被建议作为处理废水的微生物学质量的适当指标。6个体细胞伴是一组可以感染大肠杆菌和其他大肠菌菌的噬菌体,使其成为最丰富的指标
美国需要将其电力生产增加一倍。大型核电站有可能与任何其他来源提供更便宜和更清洁的能源。美国建造核电站的历史远不及成本效益。本简介建议利用现有技术有效地建造和操作核电站的过程。建议的方法包括:1)政府通过控制流程并提供第一轮融资来重新启动行业,2)经过一致的训练有素的劳动力,一遍又一遍地建造了验证的反应堆设计,3)3)工作是由成本加上固定费用合同进行的,而4)公用事业公司曾经购买并以成本购买费用以及费用再加费用。提供了使用这种方法在50年内构建300个大型反应堆的一个例子,该反应堆涵盖了美国的25%的生成需求分析显示了政府和公用事业的现金流量和回报,发电能力的增长以及就业增长。政府投资仅在最初的31年中,平均年度投资为117亿美元($ b),并收回其所有费用加上70年的利息。公用事业公司将可靠的基本负载容量提高了300,000兆瓦(MWS),并以每兆瓦时36美元的价格提供批发电力($/MWH)。创造和维持了超过100万个就业机会,并创造了139亿美元的国内供应链市场。该计划可以无限期地维持自己,甚至可以维持
摘要:在适应富含异种生物的水的过程中,生物系统经过多个阶段。第一个与社区的重组,结构的明显破坏以及活性生物降解剂的乘法有关。本研究的目的是描述在垃圾填埋场治疗中适应阶段发生的微生物组重组。在模型SBR(测序批处理反应器)中,模拟了21天的填埋液纯化过程。废水以浓度越来越高。进入未稀释的渗滤液时,激活的污泥结构分解(污泥体积指数-4.6 ml/g)。化学氧的需求和氮浓度保持在进水中的高值(分别为2321.11 mgO 2 /L和573.20 mg /l)。发现了大量的自由泳式细胞,并且伪摩an和acinetocacter属的有氧杂育和细菌的数量增加了125次。Azoarcus -Thauera簇(27%)和假单胞菌属。(16%)在活性污泥中注册为主要细菌基团。在微生物群落的变化结构中,γ-杆菌,家庭根茎科,糖疗法阶层主要代表。在悬浮的细菌,微分细菌科和伯克霍尔德科(Burkholderiaceae)以其降解异生物的能力而闻名。酶学分析表明,芳香结构的裂解的正通道在社区中活跃。在技术层面上,浸出的微生物群落中所述的变化似乎具有破坏性。但是,在微生物学层面上,明确概述了初始适应的趋势,如果继续,这可以提供高效的生物降解群落。
塑料生产和浪费塑料堆积的增长对社会,环境和经济构成了严重的挑战。当前的机械回收过程受到塑料废物的分类/预处理和塑料降解的限制,该过程要求更有效的回收策略。催化微波辅助的热解可以作为废物塑料化学回收并产生燃料和石化原料(如石脑油)的可行方法。本讲座介绍了我们最近的一系列关于热解反应堆设计和催化剂开发方面的工作,目的是将这项技术推向工业应用。每天开发了一个处理能力为200 kg塑料的实验室尺度连续微波辅助热解系统,该系统具有连续的下水流操作和混合球床反应器。将碳化硅作为微波吸收剂掺入微波加热过程中,可以快速,均匀和节能加热。使用常规ZSM-5催化剂对系统的基线测试获得了基于聚烯烃的塑料的C 5 -C 22液碳氢化合物的57 wt。%。通过使用行业供应链分析工具,使用材料流,与从维珍材料中生产类似产品相比,该过程的节能估计为32%。 为了提高液态烃产物的产量和质量,测试了一系列催化剂并在实验室规模的设置上进行了比较。 ZSM-5涂料在SIC泡沫支撑上。与从维珍材料中生产类似产品相比,该过程的节能估计为32%。为了提高液态烃产物的产量和质量,测试了一系列催化剂并在实验室规模的设置上进行了比较。ZSM-5涂料在SIC泡沫支撑上。值得注意的是,Al 2 O 3的继电器催化,然后是ZSM -5的ZSM -5,最多100%转化为单芳烃,而C 5 -C 12烷烃/烯烃以催化剂与塑性比为4:1; Y5.1,F20沸石和Al 2 O 3促进了主要在C5-C23范围内的烷烃和烷烃的生产; MCM -41导致形成C 13 -C 23烷烃和烷烃,选择性为86.6%; ZSM-5有利于选择性为70%的芳香剂的产生。除了开发和选择适当的催化剂材料外,还需要仔细设计催化反应器,以便在操作过程中确保足够的热量和催化剂床内的大量和传质,并且可以方便地实践催化剂再生程序。传统的设计(例如随机填充床)在此过程中可能会出现问题,因为催化剂停用和可乐/蜡堆积很可能。可能的解决方案是一个结构化催化反应器,该反应器由带有涂层催化剂的结构化填料组成,例如该结构化催化剂已在实验室规模的设置中进行了测试,用于升级热解蒸气,结果表明,在催化活性和稳定性方面,它的表现优于许多其他催化反应器设计。此外,可以将复合催化剂重新生成和重复使用,同时很好地保留其材料特性和多个反应再生周期后的催化活性。
乙烯和丙烯之间的生产比取决于所使用的催化剂,反应条件和技术。上面的两个反应步骤都出现在催化流动型反应器中。通过不必要的反应形成的可乐会随着时间的推移积聚在催化剂中,这可以降低其性能。因此,将催化剂的一部分从反应器连续移至再生单元。借助于再生反应器中的空气或氧气从催化剂中取出焦炭。反应产生的丙烯与乙烯之间的比率也可以通过操作条件来调整:范围为1.3至1.8。将转换反应器的产品流喂入分离部分,以去除水并恢复未反应的DME。富含烯烃的流被定向到分馏部分,其中所需的产物乙烯和丙烯被回收。残留气体和由介质沸腾的烃组成的流也在分离部分中回收。来自分离截面的碳氢化合物混合物被送入裂纹反应器,为乙烯和丙烯产生提供了另一种来源。开裂产物富含烯烃,该烯烃被发送到分离部分以回收乙烯和丙烯。裂纹部分的副产品是C4烯烃(图片中的“高沸点烃”)的混合物(Jasper,S。,El-Halwagi,M。M. M,2015年)。
| 稳定的能源供应 PtG 是确保可靠能源供应努力的重要组成部分。它通过利用现有天然气基础设施的理想长期存储容量来促进能源转型。使用 PtG 技术,可再生能源产生的电力首先通过电解转化为氢气。这可以在专有催化反应器中与二氧化碳结合产生甲烷,然后可以不受任何限制地输送到现有的天然气基础设施中。
