近年来,许多效果已致力于寻找作为光催化剂的新材料。对光触发的催化过程的极大兴趣源于利用地球上最清洁,最丰富的能源,即来自阳光的电磁辐射。它代表了应对日益增长的全球警告以及严格连接的空气污染和水污染的独特且不可错过的机会[1,2]。这项不含化石燃料的生态友好技术的开发导致高级氧化和还原过程能够补充废水[3,4],从而从水分拆料中产生H 2 [5-7],并分别将CO 2减少到燃料中[8,9]。在这些年中,关于太阳能转化的最佳态度的材料类是基于过渡金属氧化物的半导体[10-12]。通常,半导体材料的特征是带有带子带(VB)的电子,可以通过吸收通过事件光带来的适当能量带来的能量,从而在VB中留下照片诱导的孔[13]。因此,VB中的光促进氧化孔和CB中的还原电子产生了半导体表面的复杂氧化还原反应。由于TIO 2在3.2 eV附近保持带隙,因此需要进行掺杂过程,该事实属于电磁频谱的紫外线范围。从历史上看,第一代半导体光催化剂基本上是基于Tio 2材料的发展[14]。随后是第二代材料,其中Tio 2用金属和非金属元素掺杂[15,16]。实际上,影响地球表面的太阳辐射的UV成分仅为5%,不足以将TiO 2作为光催化剂激活。另一方面,可见的组件徘徊在43%附近;这样的数量促使科学家提高了
使用植物提取物(例如Ocimum Basilicum L.(OBL)种子)的绿色合成,由于其可持续和环保的性质引起了人们的关注。在这项研究中,使用OBL种子提取物在500°C和600°C的两个不同的钙化温度下使用OBL种子提取物合成Zno-MGO-MN 2 O 3纳米复合材料,并根据光催化施用和细胞毒性进行评估。植物化学物质充当生产路线中的减少和掩盖剂,从而导致具有独特特性的纳米材料形成。表征技术,包括XRD,FE-SEM和DRS,用于分析纳米复合材料的结构,形态和光学特征。XRD结果证实,晶体尺寸从〜32 nm(500°C)增加到〜84 nm(600°C)。另外,Fe-Sem图像显示出不规则形状的纳米复合材料的形成,样品的EDX光谱证实了锌,镁,锰和氧元素的存在。研究了不同有机污染物的纳米复合材料的光催化行为。eriiochrome黑色T染料的去除百分比为97%(pH = 10持续90分钟),甲基蓝色染料的99%(pH = 10,为60分钟),甲基橙色染料的89%(pH = 105分钟),Rhodamine b Dye(pH = 3 = 3 = 3 = 3 = 3 = 3 = 3.0分钟)。 此外,在4T1细胞系上评估了在500°C下合成纳米复合材料的细胞毒性,以投资其对生物系统的影响,并获得了IC 50值在323 µg/mL左右。eriiochrome黑色T染料的去除百分比为97%(pH = 10持续90分钟),甲基蓝色染料的99%(pH = 10,为60分钟),甲基橙色染料的89%(pH = 105分钟),Rhodamine b Dye(pH = 3 = 3 = 3 = 3 = 3 = 3 = 3.0分钟)。此外,在4T1细胞系上评估了在500°C下合成纳米复合材料的细胞毒性,以投资其对生物系统的影响,并获得了IC 50值在323 µg/mL左右。
关键字:SR 2 Femoo 6,Sol-Gel方法,合成,光催化1。引言具有2 BB'O 6结构的双钙钛矿样化合物(a:稀土/碱土阳离子; B:过渡金属; B':过渡金属)最近成为讨论的重点,因为它们的独特结构和出色的特性。这类材料具有有希望的载体运输能力以及磁性,多效和光电特性,使其适合不同的应用[1-5]。特别是,已经报道了具有有希望的光催化特性的2 BB'O 6材料的数量越来越多。例如,2 NiWO 6(A:CA,SR)化合物显示出出色的有机分子降解的光催化活性[6]。A 2 BB'O 6化合物的催化性能提高了其原子结构。具体而言,已经发现,钙钛矿型氧化物的BO 6八面体结构促进了在光催化过程中电子过渡和氧空位的产生[7-10]。
用硅烷剂修饰生物合成的TiO 2纳米颗粒的表面,以产生与TiO 2 /β -Cyclodextrin和TiO 2 / ag / ag /β-环糊精纳米复合物的制备的化学联系。使用不同技术,包括FTIR,DRS,XRD,ICP,TGA,FESEM和EDX映射,鉴定了合成的纳米复合材料的结构。在阳光照射下(400-700 nm)下,在水溶液中甲基蓝染料的甲基蓝染料降解中研究了纳米复合材料的光催化活性。研究了研究甲基蓝染料降解的有效因素,包括纳米复合剂量,初始亚甲基蓝浓度和辐射时间。结果表明,在最佳降解条件下(0.01 g纳米复合材料,初始亚甲基蓝浓度为10 ppm和120分钟的阳光暴露时间),TIO 2 / ag /β-环糊精 - 环糊精在测试的纳米复合材料中表现出最高的光催化活性。纳米复合材料的光催化效率显示出:TIO 2 / AG /β-环聚糖素(99.38%)> TIO 2 /β-环糊精(84.1%)> TIO 2纳米颗粒(63.76%)。合成的纳米复合材料的光催化活性表明,这些材料可能是各种污染物降解的有希望的候选者。
摘要一系列具有SRLAAL配方1/2 m 1/2 O 4(M = M = Mn,Fe,Co)的一系列氧化物已合成,并且已经研究了其电催化活性的一半反应水,氧气裂解的一半反应,氧气进化反应(OER)和氢进化反应(她)。这些分层的氧化物由八面体配位的al/m金属组成,其中八面体被碱土/稀土阳离子分离。在合成的材料中,SRLAAL 1/2 CO 1/2 O 4显示出最佳性能,从Tafel方法评估的OER和她的OER和HE的较低的OER和她的较快反应动力学可以明显看出。通过多种因素的组合来解释SRLAAL 1/2 CO 1/2 O 4的性能,包括CO的较高的电负性引起的债券共价,以及MN和FE的较高的电负性,以及Trivalent Cobalt的良好电子构型。重要的是,电导率研究表明电荷转运与电催化活性之间的相关性,其中最活跃的催化剂还显示出最高的电导率。
摘要:我们描述了一种生物电极系统,用于评估细胞色素P450 2E1(CYP2E1)对氯唑唑酮的电催化活性。使用人CYP2E1,细胞色素P450还原酶(CPR)和细胞色素b 5(Cyt B 5),使用了系统的一个电极将Baccosomes immotimbilize Baccosomes immotimbilize Baccosomes。第二个电极用于用平方波伏安法注册,通过其直接的电化学氧化来量化CYP2E1产生的6-羟基氯唑唑酮。Using this system, we determined the steady-state kinetic parameters of chlorzoxazone hydroxylation by CYP2E1 of Bactosomes immobilized on the electrode: the maximal reaction rate ( V max ) was 1.64 ± 0.08 min − 1 , and the Michaelis constant ( K M ) was 78 ± 9 µ M. We studied the electrochemical characteristics of immobilized Bactosomes and have揭示了从电极中的电子转移既出现到CPR的平均假体和CYP2E1和CYT B 5的血红素铁离子。此外,已经证明CPR具有激活CYP2E1电催化活性向卫生的能力,这可能是通过分子间电子从CPR的电化学还原形式转移到CYP2E1血红素铁离子。
摘要:与合成染料的水污染是全球不断升级的问题。在此,CO 3 O 4装饰的还原氧化石墨烯(CO 3 O 4 -RGO)被报告为有效的有机染料分解的有效异质光催化剂。通过包括XRD,XPS,TEM和FTIR在内的光谱技术证实了CO 3 O 4 -RGO的合成。表征后,制备的CO 3 O 4 -RGO复合材料作为光催化剂测试,以降解甲基蓝和甲基橙。CO 3 O 4 -RGO的光催化效率在60分钟后> 95%,相当于200 mg/L作为每种染料的初始浓度。通过BOD和COD测量确认了MB和MO的光降解。还研究了实验参数,例如CO 3 O 4 -RGO的可重复使用性,催化剂剂量的影响以及染料浓度对光催化活性的影响。MB降解的Co 3 O 4 -RGO的光催化活性分别比CO 3 O 4和RGO的光催化活性分别高2.13倍和3.43倍。同样,MO降解的Co 3 O 4 -RGO的光催化活性分别比CO 3 O 4和RGO的光催化活性分别高2.36倍和3.56倍。因此,发现CO 3 O 4 -rgo是一种有效且可重复使用的光催化剂,用于在水性培养基中所选染料的分解。
可以通过合成后修饰(PSM)策略来规避,这进一步扩大了MPN的功能。[28]尽管已经引入了广泛的不同化学功能,但功能生物学实体的实现,例如肽,蛋白质或寡核苷酸,有望在非对称有机催化,鼠分离或特定的离子/气体/气体结合的非对称有机体所需的高度特定相互作用的MPN出现。ma等。在酰胺连接的COF中优雅地利用了缺陷,以固定赖氨酸,溶菌酶或三肽Lys-val-Phe在残留的羧酸盐上。[29]该材料被证明能够进行手性分离,但缺陷代表了COF结构中固有的构象柔韧性和降低的结晶度。使用功能构建块的共聚方法成功地导致将Pro引入有组织的COF中。[30]途径需要保护组的策略,强制执行额外的脱身步骤,并避免COF网络中的功能实体的本地拥挤,在实施功能性肽域时,随着分子量的增加,可能会变得越来越具有挑战性。[31]
为我们在地球上的生命,我们都依靠干净的水。无论如何,经常排放到天然水供应中的工业和住宅污染物增加了生态系统。几项研究报告说,包括玫瑰孟加拉,罗达矿B,亚甲基蓝色(MB),靛蓝,红色,焦糖,维多利亚蓝色,红色120,胸腺蓝色,eiochrome,erioChrome,erioChrome,eiiochrome,甲基蓝色(MB)和甲基蓝色(MB),1-5在整个生产和处理过程中丧失和处理的染料和处理。6这种染色的废水包含非生物降解,极具毒性和有色色素,可能对生物有毒且有害。7,8这促使来自世界各地的学者通过开发有效的方法来清洁或处理水来解决问题。污染的水可以通过分解