近几十年来,广泛使用化石燃料已导致全球变暖,增加了对环境保护的压力。固体氧化物细胞(SOC)是有希望的电化学能量转换和在高温(600 - 1,000°C)下使用的存储装置。SOC可以在燃料电池模式(固体氧化物燃料电池或SOFCS模式)下运行,在那里它们通过氢或其他能源资源(例如碳氢化合物,CO等)产生电力,也可以在电解模式(固体氧化物电解电池或SOEC模式)中进行操作,从而在其中产生Hygas或Syngas等,从H 2 O和CO供电,并配备H 2 O和Co 2 O和Co Electrictitions Electrictitions Electrictity。当在SOFC和SOEC模式下操作时,它们可以称为可逆的氧化物细胞或RSOC。从根本上讲,已经开发了两种类型的SOC,即管状和刨床设计。管状型SOFC具有长期的稳定性,而平面型SOFC与管状型SOFC相比具有高功率密度,该型SOFC显示出良好的特性,例如高体积功率密度和低电阻。XI等。 估计平面型SOFC内的各种物理参数。 详细构建了该模型,包括气流,传热,传质和电化学反应。 因此,平面型SOFC的性能受结构参数的影响(Xi等人 )。 此外,SOFC的工作温度在催化活性,稳定性,电效率,燃料的灵活性和材料的耐用性方面起着至关重要的作用。 XI等。 )。 Thornton等。 )。XI等。估计平面型SOFC内的各种物理参数。详细构建了该模型,包括气流,传热,传质和电化学反应。因此,平面型SOFC的性能受结构参数的影响(Xi等人)。此外,SOFC的工作温度在催化活性,稳定性,电效率,燃料的灵活性和材料的耐用性方面起着至关重要的作用。XI等。 )。 Thornton等。 )。XI等。)。Thornton等。)。它在高温(500 - 900°C)下运行,其优点是它可以用宽型燃料(包括氢,甲烷,葡萄球菌,乙醇,沼气等)运行。通过热量和发电(CHP)的结合,可以最大程度地提高80%以上的效率。开发了具有100 kW发电的生物量气体(BG)-SOFC-CHP系统。结果显示出显着的节能效果。这项工作的主要目标是分析与传统能源系统相比的CHP系统的优势(Xi等人SOFC的工作温度会影响细胞中发生的物理和化学过程。这些过程也受到微观结构的影响。计算了表征SOFC阴极的微观结构的阻抗数据。他们通过使用电化学阻抗光谱(EIS)数据发现了SOFC阴极微观结构的有效曲折(Thornton等人在电极的催化活性方面,高温操作有利于使用非私致金属催化剂。Xia等。 在Ni-CEO 2材料上进行了理论计算和实验。 镍的存在增强了H 2吸附,并降低了的能量屏障Xia等。在Ni-CEO 2材料上进行了理论计算和实验。镍的存在增强了H 2吸附,并降低了
与技术的快速发展有关,越来越多的人会担心未来的外观,尤其是在AI方面。人工智能中开发的最新方法具有重大的社会印象。chatgpt产生的文字像人和数据生成的图像一样可怕。ai创建如上所述的新内容,称为生成ai。类似于由正确顺序的单词组成的句子,可以应用生成方法来生成氨基酸的蛋白质。蛋白质是所有生命的基础,具有运输,细胞结构,细胞信号传导和催化活性等功能。能够创建新的,功能良好的蛋白质可能会导致新药或更有效的工业过程。但是,蛋白质研究中的人工智能的时间比Chatgpt能够引起惊奇和焦虑的时间更长。
聚集素,包括聚乙烯和聚丙烯,代表了现代生活中必不可少的塑料材料的最重要家族之一。实现这些材料的最佳特性至关重要,这在很大程度上取决于催化剂支持和聚合技术的进步。高性能催化剂的产生在改善聚合物特性中起着至关重要的作用。最近的研究集中在Ziegler-Natta催化剂中使用金属氯化物(路易斯酸)来增强催化活性和聚合物特性。这项研究介绍了一种新型的降水方法,以准备基于MGCL 2的支持,并研究了使用ALCL 3,ZNCL 2及其组合的TICL 4 /MGCL 2 /ETOH /ETOH /表面活性剂催化剂系统。结果表明,ALCL 3和ZNCL 2的联合使用显着超过了单个修饰符,而最佳的修饰符
非导电聚合物基质可能会通过阻断酶和电极活性位点之间的生物电子转移机制来影响DET过程。[8]在这种情况下,已对聚苯胺,聚吡咯和聚噻吩等导电聚合物进行了深入研究,以固定酶,以增加生物传感器中酶的催化活性和生物燃料的产生。[9,10]多吡咯(PPY)在低氧化潜力和中性pH值下在生物相容性环境下在生物相容性环境下在生物相容性环境下在生物相容性条件下特别引起了人们的注意。[11-13]除了其良好的电导率外,电化学合成的PPY膜还具有吸引人的特征,其对公共电极表面的粘附很高。[13]
通过降解蛋白质降解进行过程。蛋白酶体抑制剂已显着提高了多发性骨髓瘤患者的存活率。然而,经临床认可的蛋白酶体抑制剂未能针对这样的盖子肿瘤功效,既不单独或与其他疗法结合。针对Severa l自身免疫性疾病和结肠CA N CER的临床前模型,针对免疫蛋白酶体的靶向免疫蛋白酶体已有效。此外,免疫抑制剂抑制剂可防止慢性排斥Ogeneic器官移植。近年来,抑制一个蛋白质5ome的一个活跃中心不足以实现治疗益处的抑制已变得已经变得明显了。在这篇综述中,我们总结了靶向多种催化活性蛋白酶体的最新见解,如何干扰自身免疫性,实体瘤的生长以及所有OGRAF T排斥的疾病进展。
摘要:合成、表征了 Ni/α-Al2O3 催化剂和一系列双金属催化剂(包括 Pd-Ag、Ni-Pd、Ni-Zn、Ni-Ag 和 Ni-Ga)并在乙炔选择性加氢制乙烯中进行了测试。双金属催化剂 Ni-Ga 与 Pd-Ag 基催化剂相比表现出几乎相同的乙烯选择性。评估了 Ni/Ga 比对乙炔加氢催化活性和乙烯选择性的影响。通过透射电子显微镜、X 射线衍射、氢气程序升温还原和 X 射线光电子能谱进行表征,以确定 Ni-Ga 基催化剂上的活性相,这与催化性能和催化剂上发生的反应机理相关。 Ni-Ga晶格结构中Ga的存在限制了解离H*的移动,降低了乙烯的吸附结合能,从而可以防止乙炔过度加氢。
利用大规模储能技术实现可再生能源的高效利用成为当今最热门的研究领域之一。1,2其中,钒氧化还原流电池(VRFB)具有容量设计灵活、循环寿命长、环境友好等优点,被认为是最有前途的大规模储能系统,目前已实现兆瓦时规模。尽管取得了巨大的成功,但其能量效率较低,无法与锂离子电池等其他电化学储能技术相媲美,寻找提高能量效率的方法至关重要。电极是钒离子氧化还原反应发生场所,是实现高效VRFB的关键。目前,石墨毡由于其在浓酸性条件下具有良好的稳定性和高导电性,被广泛应用于钒液流电池的电极材料。3 它们的催化活性低、比表面积小,不利于和促进
用于电催化水分裂的高级材料对于可再生能源研究至关重要。在这项研究中,我们描述了一个两步反应,以制备由Pt纳米颗粒和MOS 2纳米片组成的氢进化反应(她)的电极。形态和结构的特征是多种技术,包括SEM,TEM,XRD和XPS。详细的电化学特征表明,PT纳米颗粒/MOS 2纳米片/碳纤维电极(2.03 w%pt)在其酸性电解质中表现出极好的催化活性,其超电量为5 mV(Vs.她)。估计相应的Tafel斜率为53.6 mV/dec。稳定性通过长期电势周期和扩展电解确认催化剂的特殊耐用性。â2015 Elsevier Ltd.保留所有权利。
摘要:DEAD-box ATPase 是 RNA 生物学各个方面必不可少的普遍存在的酶。然而,这些酶有限的体外催化活性与它们复杂的细胞作用不一致,最显著的是它们在核糖核蛋白 (RNP) 组装过程中驱动大规模 RNA 重塑步骤。我们描述了 60S 核糖体生物合成中间体的低温电子显微镜结构,揭示了 DEAD-box ATPase Spb4 的上下文特异性 RNA 解旋如何导致 rRNA 二级结构的广泛、序列定向重塑。多个顺式和反式相互作用稳定了催化后高能中间体,从而驱动 rRNA 结构域 IV 内根螺旋结构的组织。该机制解释了如何利用 DEAD-box ATPase 有限的链分离来提供非平衡方向性并确保高效准确的 RNP 组装。