在本手册中,推荐的设计方法是允许应力设计 (ASD),因此在材料应力和连接处力的形成过程中会考虑安全系数 (FS)。本手册之所以选择这种设计方法,是因为 ASD 仍然是轻型框架、住宅、木结构的主要设计方法。大多数木结构硬件和连接器供应商都会为其产品提供负载限制,并在限制中考虑安全系数。如果设计师更喜欢这种极限强度或极限状态设计方法,则可以为木材提供负载和抗力系数设计 (LRFD) 指导。
在本手册中,推荐的设计方法是允许应力设计 (ASD),因此在材料应力和连接处力的形成过程中会考虑安全系数 (FS)。本手册之所以选择这种设计方法,是因为 ASD 仍然是轻型框架、住宅、木结构的主要设计方法。大多数木结构硬件和连接器供应商都会为其产品提供负载限制,并在限制中考虑安全系数。如果设计师更喜欢这种极限强度或极限状态设计方法,则可以为木材提供负载和抗力系数设计 (LRFD) 指导。
在本手册中,推荐的设计方法是允许应力设计 (ASD),因此在材料应力和连接处力的形成过程中会考虑安全系数 (FS)。本手册之所以选择这种设计方法,是因为 ASD 仍然是轻型框架、住宅、木结构的主要设计方法。大多数木结构硬件和连接器供应商都会为其产品提供负载限制,并在限制中考虑安全系数。如果设计师更喜欢这种极限强度或极限状态设计方法,则可以为木材提供负载和抗力系数设计 (LRFD) 指导。
在本手册中,推荐的设计方法是允许应力设计 (ASD),因此在材料应力和连接处力的形成过程中会考虑安全系数 (FS)。本手册之所以选择这种设计方法,是因为 ASD 仍然是轻型框架、住宅、木结构的主要设计方法。大多数木结构硬件和连接器供应商都会为其产品提供负载限制,并在限制中考虑安全系数。如果设计师更喜欢这种极限强度或极限状态设计方法,则可以为木材提供负载和抗力系数设计 (LRFD) 指导。
其中: ,K = 表面最小允许应力,AN/m2F p= 考虑排水的折减系数 p = 1.0(若无排水、排水无法使用或下游表面出现开裂) p = 0.4(若使用排水)。γ = 水的单位重量,AN/m3F h= 水面以下深度,AmF = 升力面材料的抗拉强度,AN/m2F SF= 安全系数 安全系数 3.0 应用于通常情况,2.0 用于非常情况,1.0 用于极端荷载组合。根据 USBR (1987),只要地震事件后满足应力和稳定性标准,极端条件下允许开裂,但新建大坝的通常和非常情况荷载均不允许开裂。
1. 认识允许应力(SLS 和 ULS)的原理及其重要性 2. 讨论混凝土和全预应力和部分预应力结构的抗弯强度概念 3. 评估构件在传递过程中和使用寿命期间预应力的损失 4. 区分弹性分析、弹塑性分析和塑性分析 5. 解释、定位和计算 ULS 处的塑性矩重新分配水平 6. 认识钢筋混凝土和预应力混凝土之间的区别,并在任何特定情况下选择合适的混凝土 7. 描述钢-混凝土组合梁的组成部分及其破坏模式 8. 区分组合梁中全剪力连接和部分剪力连接的不同行为
完整的住宅设计通常需要评估几种不同类型的材料,如第 4 章至第 7 章中所述。一些材料规范使用允许应力设计 (ASD) 方法,而其他材料规范使用荷载和抗力系数设计 (LRFD)。第 4 章使用 LRFD 方法进行混凝土设计,使用 ASD 方法进行砌体设计。对于木材设计,第 5、6 和 7 章使用 ASD。因此,对于单个项目,可能需要根据两种设计格式确定负载。本章提供了针对每种方法的负载组合。单个标称负载的确定基本不受影响。本文不涉及洪水负载、冰负载和雨负载等特殊负载。请读者参阅 ASCE 7 标准和有关特殊载荷的适用建筑规范规定。
完整的住宅设计通常需要评估几种不同类型的材料,如第 4 章至第 7 章中所述。一些材料规范使用允许应力设计 (ASD) 方法,而其他材料规范使用荷载和抗力系数设计 (LRFD)。第 4 章使用 LRFD 方法进行混凝土设计,使用 ASD 方法进行砌体设计。对于木材设计,第 5、6 和 7 章使用 ASD。因此,对于单个项目,可能需要根据两种设计格式确定荷载。本章提供了针对每种方法的荷载组合。单个标称荷载的确定基本不受影响。本文不涉及洪水荷载、冰荷载和雨荷载等特殊荷载。读者可以参考 ASCE 7 标准和有关特殊荷载的适用建筑规范规定。
就船舶而言,这些概念是由 St. Denis 和 Pierson [1] 在确定船舶在现实的随机航道中航行时的运动、结构载荷等时引入的。大约在同一时间,结构概率设计领域也开展了其他工作。A. M.l?reudenthal [21] 给出了概率方法在工程结构安全设计中的基本应用,后来他专门研究了海洋结构 [3]。其他人也考虑了船舶问题,包括 Abrahamsen 等人 [4]、Lewis [5]、Nordenström [61、Mansour [7]、[8]、Mansour 和 Faulkner [9]、Stiansen 等人 [10],他们将结构可靠性理论应用于船舶。基本理论告诉我们,如果我们能够清楚完整地定义载荷 (需求) 和强度 (能力) 的概率分布,就有可能计算出失效或倒塌的概率。然后可以根据可接受的失效概率建立设计强度标准,而无需依赖安全系数、允许应力或载荷系数。
15. 补充说明 由船舶结构委员会及其成员机构赞助 16. 摘要 通过实验和数字方法研究了 78 个铝加筋原型板在轴向压缩载荷下的极限强度特性。本研究的目的是开发一种铝加筋板 ULS 设计方法的海洋应用。高强度铝合金越来越多地用于建造高速船以及其他类型的重量关键结构。过去,铝板结构的设计标准和程序主要基于结构部件的允许应力和简化的屈曲检查。然而,ULS 是结构设计的更好基础,因为仅使用线性弹性方法很难确定任何结构的实际安全裕度。如果要获得一致的安全措施,确定真实的极限状态至关重要,然后可以为不同尺寸、类型和特性的结构的比较提供更公平的基础。这项 SSC 研究是在韩国釜山国立大学进行的,得到了法国 Alcan Marine 的慷慨支持,该公司提供了所有材料,韩国韩进重工制造了 78 块原型面板。17. 关键词