尽管过去十年肿瘤反应和患者生存率取得了显著进展,但肺癌全身免疫疗法仅对约一半接受治疗的患者产生客观反应。基于这一局限性,人们正在研究联合策略以提高反应率。冷冻消融已被提议作为一种诱导免疫原性细胞死亡并与全身免疫疗法(包括免疫检查点抑制剂)产生协同作用的技术。冷冻消融传统上是在影像引导下经皮进行的,尽管最近的技术进步允许通过支气管镜进行。本文,我们回顾了冷冻消融在非小细胞肺癌中的应用以及可能诱导抗肿瘤免疫的临床前和临床证据。我们重点介绍了涉及这种方法的正在进行的研究,并提出了未来的研究领域。
大胆的倡议是由大学的校长Cheryl de la Rey教授概念化的,这是由大学在三年内进行了10050万兰特的大量投资。这项投资允许通过创新的研究和机构结构进行实验,为合作和合作伙伴关系提供了环境。IRT超出了期望。FNUW成就的IRT基础在于人们,合作伙伴和项目,这些人,伙伴和项目创造了大量专业知识,重点是解决南非农业和食品体系中的基本问题。集体专业知识库代表了一个机构中最大的研究人员之一。通过我们的人民,合作伙伴和项目,我们共同解决了有关南非和非洲大陆脆弱社区的问题。在对IRT的中期审查中,本报告反映了使IRT成功的人员,合作伙伴和项目。
摘要 — 我们提出了一种可组合的设计方案,用于开发用于量子模拟应用的混合量子/经典算法和工作流程。我们的面向对象方法基于构建一组富有表现力的通用数据结构和方法,这些结构和方法可以对各种复杂的混合量子模拟应用程序进行编程。我们方案的抽象核心是从对当前量子模拟算法的分析中提炼出来的。随后,它允许通过扩展、专业化和动态定制由我们的设计定义的抽象核心类来合成新的混合算法和工作流程。我们使用与硬件无关的编程语言 QCOR 将我们的设计方案实现到 QuaSiMo 库中。为了验证我们的实现,我们在 IBM 的商业量子处理器上测试并展示了它的实用性,运行了一些原型量子模拟。索引术语 — 量子计算、量子编程、编程语言
如果不做出改变,就无法恢复控制感。在信息系统文献中,这种变化通常被研究为使技术适应用户的需求或使自我适应技术。然而,这种适应性视角并不能完全解释与人工智能环境相关的变化。就前者而言,与传统信息系统不同,人工智能具有动态规则和启发式性质,几乎不允许通过定制和个性化对工件进行确定性更改。至于后一种适应,人工智能工件的代理性质以及它所取代的任务的复杂性增加表明人类工作发生了根本性变化,不仅改变了任务,还改变了工作设计。因此,人类适应技术的被动视角已经不够了。相反,更相关的是研究如何在人与人工智能共享任务的背景下调整工作设计以更好地满足人类需求 [17]。
在当代社会中,锂离子电池已成为主要的储能选择之一。li-ion电池的市场份额和特定的应用随着时间的推移大幅增长,并且仍在上升。许多杰出的科学家和工程师在1990年代开发商业锂离子电池方面非常努力,这导致了他们的成功。水或非水电器,阳极,阴极和膜,在允许通过离子的同时将两者分开的膜是所有电池系统的四个必需组件。虽然在电源系统中仍未充分利用,但电池是开发电动汽车行业的首选解决方案,尤其是与光伏和风能结合使用时。作为一种技术进步,局部电池为可持续能源生产和大量碳排放量提供了巨大的潜力。本评论涵盖了工作原理,阳极,阴极和电解质材料以及相关机制,衰老和性能降解,应用程序,制造过程,市场,回收和液管电池安全性。
多年来,通过 CRISPR 技术,斑马鱼、果蝇和秀丽隐杆线虫的定向诱变技术得到了显著改进。通过在体内诱导小的靶向突变,CRISPR 使研究人员能够有效地检查细胞通路。虽然这些突变通常是随机插入或缺失 (indel),但如果 CRISPR 组件设计得当,它们通常会导致靶基因的功能性破坏。但是,当前用于识别 CRISPR 生成的插入/缺失的协议通常需要大量劳动力、耗时或成本高昂。在这里,我们描述了一种直接、高通量的方法,用于通过使用片段分析仪平台来识别突变的存在,该平台允许通过高分辨率毛细管凝胶电泳进行 DNA 片段大小测定。按照该协议,可以快速可靠地识别小的插入/缺失(少至 2 个碱基对),从而可以对新生成的或稳定的突变系进行大规模基因分型。
挤出式高压电力电缆最常见的绝缘材料由低密度聚乙烯 (LDPE) 组成,必须进行交联才能调整其热机械性能。一个主要缺点是需要危险的固化剂,并且在电缆生产过程中会释放有害的固化副产物,而热固性使绝缘材料的再加工变得复杂。本观点探讨了替代概念开发的最新进展,这些概念允许通过点击化学型固化聚乙烯基共聚物或使用聚烯烃共混物或共聚物来避免副产物,从而完全消除了交联的需要。此外,聚丙烯基热塑性配方使设计绝缘材料成为可能,这些绝缘材料可以承受更高的电缆工作温度,并且在电缆达到使用寿命后通过重新熔化来促进再加工。最后,探索了聚乙烯基共价和非共价适应性网络,这可能允许结合热固性和热塑性绝缘材料在热机械性能和可再加工性方面的优势。
用于选择性氢化反应的丰富金属催化剂。作为一类独特的多孔分子材料,金属 - 有机框架(MOF),[7]已被探索用于广泛的应用,包括气体存储[8]和分离[8]和[9]传感,[10],[10]以及生物医学成像和癌症治疗。[10–11] MOF特别适合通过摄取其分子可调性,通过大通道进行主动位点访问以及增强的催化剂稳定性来设计可重复使用的多孔单位固体催化剂。[12]因此,MOF催化剂可以结合均匀催化剂的分子可调性和均匀的催化位点,以及异质催化剂的稳定性,易于分离以及可重复使用,以提供有机转化的新类别可持续催化剂的新类别。[13]在某些示例中,MOF允许通过位点隔离来稳定催化活性中心,以设计基于单个金属中心的溶液无接口催化物种。[14]
为了扩展哺乳动物基因组重复元素的基因组编辑的边界,我们利用了一组Dead-Cas9基本编辑器(DBE)变体,这些变体允许通过与DNA双重链断管突破和单个单链损坏相关的细胞死亡,以每个细胞的数以安装每个细胞的编辑。我们使用了一组GRNA目标重复元素 - 在每个单元格中大约32至161 000的目标副本中。dbes在大规模基础编辑后启用了生存,可在293T中以高达约13 200和〜12200基因座的焦点突变,分别诱导人类诱导的多能干细胞(HIP-SC),三个数量级比以前记录的大三个。这些DBE可以克服当前的靶向突变和毒性障碍,以防止大规模基因组工程后细胞存活。
T F = 0的相应传输函数。15,其中虚线曲线代表2 = - 50,a 3 = - 3980。(b)对于t f = 0。15,在使用θ= p 3 i = 0 a i t i(固体蓝色)的情况下,使用θ= p 5 i = 0 a = 0 a i t i具有最佳参数a 2 = - 50,a 3 = -3980(dotted-y/ y/ y/ y/ f = 12 fur = fur = fure), 15。在T min f = 0时最小的操作时间t f到达。 15用于c <0。 01。 数值计算证明,进一步设置更高的多项式ANSATZ(S> 5)并不能改善缩短t min f。 参考文献中介绍了STA与最佳控制理论之间的详细比较。 [1],证明IE方法允许通过在多项式或三角分析中引入更多自由dom来从最佳控制理论中获得的性能。 在这里,我们通过将IE与多项式函数θ= p n i = 0 a i t i,三角函数θ= a 0 + a 1 t + p n i = 2 a i sin [(i-1)πt/t f]和指数函数θ= a 0 e e 1 e t + a 2 e e-t + a 2 25以及表I所示的Faquad,表明较高的多名ANSATZ提供了准最佳时间解决方案。15。在T min f = 0时最小的操作时间t f到达。15用于c <0。01。数值计算证明,进一步设置更高的多项式ANSATZ(S> 5)并不能改善缩短t min f。参考文献中介绍了STA与最佳控制理论之间的详细比较。[1],证明IE方法允许通过在多项式或三角分析中引入更多自由dom来从最佳控制理论中获得的性能。在这里,我们通过将IE与多项式函数θ= p n i = 0 a i t i,三角函数θ= a 0 + a 1 t + p n i = 2 a i sin [(i-1)πt/t f]和指数函数θ= a 0 e e 1 e t + a 2 e e-t + a 2 25以及表I所示的Faquad,表明较高的多名ANSATZ提供了准最佳时间解决方案。