已向伦敦证券交易所有限公司 (“ 伦敦证券交易所 ”) 提出申请,要求将根据本计划发行的某些票据在本《上市细则》发布之日起 12 个月内上市,以进入伦敦证券交易所的国际证券市场 (“ ISM ”)。根据金融工具市场条例 (EU) No. 600/2014 的规定,ISM 不是受监管的市场,因为根据《2018 年欧洲联盟(退出)法案》(经修订)(“ EUWA ”)(“ UK MiFIR ”),ISM 构成英国国内法的一部分。根据条例 (EU) 2017/1129 的规定,本《上市细则》不构成基本招股说明书,因为根据 EUWA 的规定,ISM 构成英国国内法的一部分(“ 英国招股说明书条例 ”)。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。是
工程领域的分支。根据六十年代的最后几年的需求,发明并提出了识别诸如众所周知的Hazop方法之类的过程风险的方法[3-4]。但是,尽管强制性安全法和发明了识别和评估风险的方法,但工业单位的事件仍会发生。伊朗在工业化过程中还经历了重大的工业事件。即使是具有最新设计发现和最有经验的运营人员的最佳工业单位也无法免疫事件。2005年在美国德克萨斯州的一家炼油厂发生火灾和爆炸事件,导致15人死亡和数十亿美元的损失,证明了这一说法[5]。风险管理的支柱之一是风险评估。风险评估是
图形处理单元 (GPU) 承受着过大的压力,以加速高性能计算应用程序,并用于加速多个领域的深度神经网络,这些领域的预期寿命长达数年。这些条件使 GPU 硬件面临(过早)老化,导致在通常的制造结束测试之后出现永久性故障。因此,迫切需要评估 GPU 永久性故障影响的技术,从而可以估计可靠性风险并可能减轻它。在本文中,我们提出了一种评估永久性故障对 GPU 调度器和控制单元(最特殊、压力最大的资源)的影响的方法,以及可以量化这些影响的第一个数字。我们描述了门级 GPU 模型的调度器和控制器中超过 5.83x10 5 个永久性故障效应。然后,我们通过检测 13 个应用程序和两个卷积神经网络的代码,在软件中映射观察到的错误类别,注入超过 1.65x105
碳青霉烯是广谱抗生素,在治疗由革兰氏阴性细菌引起的严重感染中起主要作用。碳青霉烯型肠杆菌科的全球传播正在成为一个公共卫生问题(Jamal等,2020)。肠杆菌科中碳青霉烯耐药性的升高主要是由于获得了碳青霉烯 - 氢化酶(Carbapenemases)(Tilahun等,2021)。编码碳青霉酶的基因可以掺入细菌染色体中,但主要位于移动元素上,例如在细菌菌株和物种之间可转移的质粒或转座子(San Millan,2018年)。因此,临床暴发通常很复杂,涉及克隆,质粒或转座子的基因传播的各种因素(Brehony等,2019)。碳青霉素型OXA-48首次出现在2000年代中期,此后在许多欧洲国家和世界各地都发现了(Hidalgo等,2019)。在法国,它是产生甲状腺素酶的肠杆菌科(CPE)中最常见的酶(Emeraud等,2020)。BLA OXA-48基因被认为源自环境Shewanella菌株的染色体(Tacão等,2018)。它在物种之间的快速传播是由于其在转座子中筑巢(TN 1999),该转座主要由含有/M型质粒携带(Shankar等,2020)。控制医院病房中的暴发是必要的,以限制多药耐药细菌的传播。CPE对患者的定殖可以干扰适当的护理。fmt是CPE定殖也可能影响癌症患者化学疗法的开始,因为它与接受诱导化疗的患者的存活率较低有关(Ballo等,2019)。因此,已经实施了一种恢复健康的肠道菌群并消除CPE储层(例如粪便菌群移植(FMT))的策略。
神经精神疾病越来越普遍。鉴于其复杂且多因素的发病机理,迫切需要有效且有针对性的疗法可以改善患者的生活质量。全基因组关联研究(GWASS)已经确定了各种遗传改变,这些改变有助于神经精神疾病的发展和发展,从轻度阅读障碍到更严重的疾病,例如精神分裂症。虽然成千上万的单核苷酸多态性(SNP)(SNP)与DNA中的单个核苷酸位置发生了变化 - 与神经系统疾病有关,但大多数位于基因组的非编码区域。尽管这些非编码区未编码蛋白质,但它们包含调节元素,例如增强子序列,在控制基因表达中起着至关重要的作用。增强子可以在长距离内调节基因活性,并且通常特定于细胞类型和发育阶段。尽管其重要性,但增强子的特征仍然很差,并且尚未完全了解其在神经系统发展和疾病中的精确功能。在一项新的研究中,奇巴大学高级学术研究与医学研究院医学研究所Masahito教授以及Karolinska Institutet,Sweden,Sweden和PelinSahlénnewlobleInstutter from fromniwleart Institute froment from Technology的Karolinska Institutet的Huddinge(MedH)的Juha Kere和Peter Swoboda教授以及彼得罗斯卡研究所(Karolinska Institutet)的彼得·斯沃博达(Peter Swoboda)博士。他们还研究了与神经元疾病有关的假定增强子与GWAS识别的基因座之间的关联。他们进行了一系列高级分析,以使用Luhmes细胞来识别和表征参与神经元分化的增强子,Luhmes细胞是源自人类胎儿中脑多巴胺能神经元的细胞系。该研究的主要作者Yoshihara博士很快就会发表在EMBO报告中,他说:“阐明与疾病相关的变体影响基因调节的方式可以揭示以前统一的参与神经元疾病的分子途径,并揭示了用于药物开发的新型治疗靶标。”研究人员使用了luhmes神经元前体细胞,这些细胞可以分化为与人脑衍生神经元具有高转录相似性的功能性神经元。他们采用了基因表达(CAGE)和天然伸长转录本(净)键的CAP分析,以识别和量化基因组宽水水平的启动子和增强子的活性。这些技术与靶向的染色体构象捕获(Capture Hi-C/HICAP)相结合,这是一种将远处增强子与其靶基因联系起来的高级测序方法。该分析确定了47,350个主动推定增强剂,其中65.6%是新颖的,并且证明了与帕金森氏病,精神分裂症,双相情感障碍和主要抑郁症相关的SNP富集。最后,他们在培养细胞中进行了体外测定,以验证启动子增强子相互作用。使用CRISPR-CAS9系统进行基因组编辑,他们激活了与神经元分化和疾病有关的基因的增强子和启动子。与他们的分析一致,增强子的激活导致靶基因的表达水平显着升高。
neuron7.ai摘要:Neuron7的搜索工具是一种尖端的,AI驱动的解决方案,扩展了检索功能增长生成(RAG)的概念,以提供上下文感知的搜索和实时适应性。通过将抹布与实体歧义,LLM,元数据富集,视觉模型和用户反馈循环结合使用,Neuron7的搜索平台不仅可以检索和生成内容,而且可以自主完善,过滤器和适应搜索结果,以提供可行的见解。此白皮书探讨了Neuron7的搜索解决方案如何通过体现代理体系结构,提供一个基于实时输入和不断发展的用户需求的系统来使破布达到新的水平。1。简介企业搜索的景观已经发展到传统的基于关键字的搜索工具之外,这些搜索工具只需根据文本匹配来检索文档即可。当今的高级搜索解决方案利用人工智能(AI)不仅提供信息,而且提供上下文理解和可行的见解。Neuron7搜索通过将检索增强生成(RAG)与各种高级功能(例如命名实体识别(NER),元数据富集,视觉模型和实时学习)结合起来,将其提升到一个新的水平。该系统例证了代理体系结构,自主做出决定,根据这些决策采取行动,并不断从反馈中学习以增强搜索准确性和相关性。2。什么是代理体系结构?代理系统的关键特征包括:Neuron7搜索不仅可以检索数据并生成内容;它可以自主完善搜索结果,过滤数据,并旨在满足不仅需要找到信息的企业需求,而且还可以理解,上下文化和采取行动。代理体系结构是指具有自主决策,适应性行为以及根据环境投入和内部目标采取行动的系统。这些系统从环境(例如数据或用户查询)中感知输入,根据该输入做出决策,并采取行动以实现特定目标,而无需在每个决策点需要人为干预。
辛辛那提大学医学院神经科学的研究生课程,俄亥俄州辛辛那提45267 B当前地址:部门密歇根大学医学中心3703 Med Sci II,1241 E. Catherine St.,Ann Arbor,MI 48109-5618。 C当前地址:密歇根州立大学神经科学的研究生课程,东兰辛,密歇根州艺术与科学学院,辛辛那提大学,辛辛那提大学,辛辛那提大学医学院儿科学系,辛辛那提儿童学系和辛辛那提儿童研究基金会,辛辛那提儿童研究基金会0000-0001-9198-1411,C.S.0000-0002-4577-2659,M.T.W。0000-0001-9841-9683,C.V.V。0000-0003-3558-8812。
摘要 下丘脑的 kisspeptin (Kiss1) 神经元对青春期发育和生殖至关重要。弓状核 Kiss1 (Kiss1 ARH) 神经元负责促性腺激素释放激素 (GnRH) 的脉冲式释放。在女性中,表达 Kiss1、神经激肽 B (NKB) 和强啡肽 (Dyn) 的 Kiss1 ARH 神经元的行为在整个卵巢周期中都会发生变化。研究表明,17 β -雌二醇 (E2) 会降低这些神经元中的肽表达,但会增加 Slc17a6 (Vglut2) mRNA 和谷氨酸神经传递,这表明从肽能信号传导转变为谷氨酸能信号传导。为了研究这种转变,我们结合了转录组学、电生理学和数学建模。我们的结果表明,E2 治疗上调了电压激活钙通道的 mRNA 表达,提高了有助于高频爆发放电的全细胞钙电流。此外,E2 治疗降低了典型瞬时受体电位 (TPRC) 5 和 G 蛋白偶联 K + (GIRK) 通道的 mRNA 水平。当使用 CRISPR/SaCas9 删除 Kiss1 ARH 神经元中的 Trpc5 通道时,缓慢的兴奋性突触后电位被消除。我们的数据使我们能够制定一个生物物理上真实的 Kiss1 ARH 神经元数学模型,表明 E2 改变了这些神经元中的离子电导,从而实现了从高频同步放电(通过 NKB 驱动的 TRPC5 通道激活)到促进谷氨酸释放的短爆发模式的转变。在低 E2 环境中,Kiss1 ARH 的同步放电