在各种平民和军事应用中,例如监视,检查,搜索和救援,机器人系统变得重要并变得越来越有用。尤其是,始终期望良好发达的自主系统使人免受危险和未知环境中的操作风险。但是,对于自主系统操作,具有此类特征的环境通常更具挑战性。例如,在受GPS有限的环境中,需要机器人来估计其状态并仅在传感器测量上做出决定,而无需访问精确的位置信息[1]。在工业场景中具有复杂的结构化环境,具有移动的人类和机器人,如图1,需要自主无人机才能在混乱的环境中导致其目标,并确保与人类的安全。因此,一个稳定的无人机硬件平台和安全的轨迹计划软件框架对于处理复杂的环境结构,动态障碍以及来自测量噪声和无法预测的移动障碍行为至关重要[2]。
元宇宙和 Web 3.0 创建了一个新的数字世界,它具有特定的属性和行为,可以复制物理实体的行为和过程并对其产生影响。本研究旨在加深我们对元宇宙如何影响供应链和运营管理 (SCOM) 的理解。利用结构化文献检索的元素,并借鉴网络物理系统、数字孪生、云和数字供应链以及工业 4.0/工业 5.0 概念,我们提出了一个涵盖多个社会技术维度的元宇宙 SCOM 框架。我们认为,进一步的元宇宙发展可能导致物理 SCOM、元宇宙 SCOM 和 SCOM 共存,以协调物理世界和元宇宙世界。我们提供了一个结构化的未来研究议程,指向由元宇宙驱动的可见性、数据分析的计算能力、数字协作和连接性等新的研究问题和主题。新的研究领域可以专门针对元宇宙和新颖的 SCOM 流程和决策领域(例如,元宇宙和实体产品的联合需求预测、元宇宙中的数字库存分配、元宇宙和实体世界的综合生产计划、以及数字产品的定价和签约)以及新的绩效衡量标准(例如,虚拟客户体验水平、数字产品的可用性以及数字弹性和可持续性)。
摘要 - 使用AUSONSOPOUS车辆(AVS)的安全保证方法,通过将AVED测试放在具有挑战性的交通方案中,通过抽象场景规范捕获并在现实的交易模拟器中进行调查,进行系统级安全评估。作为基于方案的AVS测试的第一步,必须对fraffiffim festario的初始场景进行评估。在这种情况下,场景具体化挑战是将抽象交通场景的高级特定规范所采用的,旨在将它们映射到具体场景,在该场景中,为车辆的每个属性定义了确切的数字初始值(例如,位置或速度)。在本文中,我们提出了一种交流场景混凝土化方法,该方法将车辆放置在逼真的路线图上,以便满足通过表达式场景规范语言定义的一组可扩展的抽象约束,该语言也支持不一致的静态发现。然后,抽象约束映射到相应的数字约束,通过具有可自定义的目标函数和约束聚合策略的元启发式搜索来解决。我们对三个现实的路线图进行了一系列实验,以将我们方法的八个配置与状态的三种变体进行比较,并评估其可扩展性。
在过去的十年中已经进行了,以理解和利用等离子纳米颗粒的非线性响应。12,54,56,74尽管进步稳定,但许多挑战仍然提出一个问题,即非线性等离子材料是否可以与传统的非线性材料相媲美。在这里,我们回顾了非线性等离子体超材料的当前状态,并试图解决上述问题。特别是,我们将治疗集中在接近光学和近红外频率附近的质量跨空面上。单个颗粒和传播表面等离子体也被排除在范围之外,因为它们已经在参考文献中覆盖了。41。此外,在该主题上已经存在一些评论,其重点是物质方面,制造,量子效应和异国情调的非线性现象。12,42,49,54,56,71,74因此,在这里,我们排除了这些考虑因素,而是专注于讨论非线性光学,模拟方面和SHG发射元信息的原理。我们重点介绍了与以前的方法相关的问题,并讨论了如何通过使用晶格和粒子间影响来缓解这些问题,例如表面晶格共振(SLR)。51
虽然广泛讨论了元讨论,但对其复杂性的理解仍然仅限于少数几个。从概念上讲,类似于互联网的三维实施例,元词在物理和虚拟域中同时促进了同时存在。从根本上讲,它体现了视觉上沉浸式的虚拟环境,努力实现真实性,个人从事实际活动,例如商业,游戏,社会互动和休闲追求。全球大流行已经加速了各个部门的数字创新。超出了远程医疗,支付系统,远程监控和安全数据交换的进步,在人工智能(AI),虚拟现实(VR),增强现实(AR)和区块链技术方面已经取得了重大进步。尽管如此,在其新生阶段的元阶段仍在不断发展,具有革命性医疗保健的巨大潜力。通过与医疗互联网,量子计算和机器人技术的集成,荟萃分析的立场有望重新定义医疗保健系统,提供了手术精度和治疗方式的增强,从而有望在行业内进行深刻的转变。
近年来,变形金刚[9]在各种计算机视觉任务[10],[11],[12],[13]中表现出了不前期的成功。变压器的能力长期以来一直归因于其注意力模块。因此,已经提出了许多基于注意力的令牌混合器[4],[5],[14],[15],[16],目的是为了增强视觉传输(VIT)[11]。尽管如此,一些工作[17],[18],[19],[20],[21]发现,通过用空间MLP [17],[22],[23]或傅立叶变换[18]等简单操作员更换变压器中的注意模块,结果模型仍然会产生令人鼓舞的性能。沿着这条线,[24]将变压器摘要为一种称为元构造器的通用体系结构,并假设是元构造者在实现竞争性能中起着至关重要的作用。To verify this hypothesis, [24] adopts embarrassingly simple operator, pooling, to be the token mixer, and discovers that PoolFormer effectively outperforms the delicate ResNet/ViT/MLP-like baselines [1], [2], [4], [11], [17], [22], [25], [26], which con- firms the significance of MetaFormer.
产业增加值(产业增加值)是一个调查概念,指的是该产业的总产出与中间消耗之差所产生的净产出。制造业是根据《国际标准行业分类》(ISIC)第三修订本(1990年)或第四修订本(2008年)定义的。它指的是属于 ISIC 第三修订本 D 部或 ISIC 第四修订本 C 部的产业。技术分类基于研发(R&D)支出相对于增加值(下称研发强度)。研发强度的数据在经合组织发布的一份报告中提供(OECD,2003 年;Galindo-Rueda 和 Verger,2016 年,分别针对 ISIC 第三修订本和第四修订本),该报告还提出了对不同研发支出范围相对于其总增加值的产业组进行分类。MHT 产业传统上被专门定义为制造业。然而,最近有人(Galindo-Rueda 和 Verger,2016)努力将这一定义扩展到非制造业。尽管如此,中高和高科技行业主要由制造业代表。下表包括 ISIC Rev. 3 和 ISIC Rev. 4 对 MHT 行业的分类。
反射可以直观地定义为系统通过使用自己的语言表示和操作其对象来推理自身的能力。反射的经典例子可以在哥德尔的一阶算术编码和通用图灵机中看到,但许多现代编程语言也提供了反射元编程特性[25]。重写逻辑[29]及其实现Maude[10]是反射语言,它可以表示其自身元理论的重要方面[12]。因此,在Maude中可以轻松地操作、转换和分析在Maude中指定的重写逻辑理论。在Maude的整个历史中,反射被广泛应用于特定的元语言应用、扩展和原型化语言的新特性以及设计推理Maude程序的形式化工具。重要的例子是完整 Maude [ 10 ,第二部分] 和 Maude 形式环境 [ 17 ]。前者是用 Maude 本身编写的扩展 Maude 解释器,后者允许检查 Maude 规范上的汇合和终止等属性。重写系统由连续且独立的规则应用执行,其中规则和位置的选择是不确定的。但是,出于语义或效率目的,有时限制和控制规则的应用方式很方便。这可以在更高的层次上表达,而无需修改原始系统,方法是