5 指《特定秘密保护法》(2013 年法律第 108 号)第 3 条第 1 款定义的“特定秘密”。 6 日美共同防御支援协定等附带秘密保护法(1954年法律第166号)第1条第3款定义的“特别防务秘密”、秘密保护指令(2007年防卫省指令第36号)第2条第1款定义的“秘密”、防卫采办技术后勤局秘密保护指令(2015年采办技术后勤局指令第26号)第2条第1款定义的“秘密”。
5 指《特殊秘密保护法》(2013 年第 108 号法)第三条第一项规定的“特定秘密”。 6 根据《日美防卫互助协定》等《秘密保护法》(1950 年第 166 号法)第 1 条第 3 款规定的“特殊防卫秘密”;第 2 条第 1 款和国防装备局的保密(国防装备局指令 2015 年第 26 号)指第二条第一项所定义之“保密”。
AI学习数据质量改进支持工具将物体检测中误识别或未检测的原因可视化,从而轻松提高识别率。 通过在深度学习过程中使用此工具,可以缩短使用 RZ/V 系列的视觉 AI 应用程序的开发时间。
1土壤,植物和食品科学系,阿尔多·莫罗大学(Aldo Moro University),巴里(Aldo Moro University),通过G. Amendola 165/A,意大利Bari 70126; a.porrelli5@studenti.uniba.it(A.P.); mirco.vacca@uniba.it(M.V.); maria.deangelis@uniba.it(M.D.A。)2 Inrae,UNH,代谢探索平台,Metabohub Clermont,Clermont Auvergne University,F-63000 Clermont-Ferrand,法国; blandine.comte@inrae.fr(B.C.); Estelle.pujos-guillot@inrae.fr(E.P.-G.)3 MaxDelbrück分子医学中心在Helmholtz Association(MDC),分子流行病学研究小组,13125,德国柏林,13125; katharina.nimptsch@mdc-berlin.de(K.N.); mariona.pinartgilberga@mdc-berlin.de(M.P.); tobias.pischon@mdc-berlin.de(t.p。)4Charité -UniversitätsmedizinBerlin,FreeieUniversität的公司成员,柏林汉堡大学,伯林,柏林,10117,柏林,柏林,5117,德国柏林市中心(德国)心血管研究中心(DZHK)(DZHK),伯林伙伴Site,10785 Berlin,DELBANK CENICATIN (MDC),13125德国柏林7 Biobank核心设施,柏林卫生研究院,埃利弗斯蒂尼辛德斯美森柏林,柏林,10178,德国柏林 *通信:francesco.calabrese@uniba.it
由于概括和建模一系列大脑信号的复杂性,发现感官残障人士的情绪仍在继续挑战。因此,使用大脑 - 计算机界面技术来研究基于大脑信号的人的情绪和行为。情绪分析是一种广泛使用且可靠的数据挖掘分析方法。它提供了一个绝佳的机会,可以监视,评估,确定和理解消费者对产品或服务的情感。然而,即使以前的研究已经提出了使用机器学习方法对感官残障人士的情绪分类,但尚未评估视觉症患者的情绪识别模型。因此,这项研究引入了一种新的SALP群算法,该算法具有深层的基于神经网络的文本情感分析(SSADRNN-TEA)技术,该技术针对残疾人。SSADRNN-TEA技术的主要目的是专注于对社交媒体内容中存在的情绪的检测和分类。在这项工作中,SSADRNN-TEA技术经历了预处理,以使输入数据与处理和BERT单词嵌入过程的后一个阶段兼容。此外,还利用了深层复发神经网络(DRNN)模型。最后,SSA被利用以最佳调整DRNN超参数。广泛的实验涉及模拟SSADRNN-TEA方法的实时性能。实验值揭示了SSADRNN-TEA技术在几个评估指标方面的性能提高。
简介:在过去的几十年中,碳纳米材料(例如碳纳米纤维(CNF)和石墨烯)由于其宏伟的特性而引起了强烈的科学兴趣[1,2]。关于石墨烯的大部分研究都是针对合成高质量和大面积石墨烯方法的探索。有希望的方法是脉搏激光沉积和化学蒸气沉积。虽然在理解石墨烯合成方面已经取得了重要成就,但它们的形成机制尚不清楚。现场技术的最新进展现在为研究原子水平研究固相相互作用的新可能性提供了新的可能性。在这里,我们报告了通过原位透射电子显微镜(TEM)直接观察到铜含有铜纳米纤维(CU-CNFS)的结构转化。实验:使用kaufmann型离子枪制造Cu-CNF(iontech。Inc. Ltd.,模型3-1500-100FC)。所使用的样品是尺寸为5x10x100 µm的市售石墨箔。通过在CNFS生长过程中连续供应Cu,在室温下用1 keV ar +离子辐射石墨箔的边缘。在其他地方详细描述了离子诱导的CNF生长机理的细节[3]。然后将Cu-CNF安装在200 kV的TEM(JEM2010,JEOL CO.,JEOL CO.)的阴极微探针上,并研究了Cu-CNFS向石墨烯的结构转化,在电流 - 电压(I-V)测量过程中进行了研究。结果和讨论:在I-V测量过程中,高温是通过Cu-CNF结构中的Joule加热获得的。焦耳CNF的加热导致其表面石墨化,最后在转化为严重扭曲的石墨烯中。tem图像表明,最初,CNF在本质上是无定形的,而I-V过程中的电流流动引起了CNF的晶体结构的急剧变化,形成了石墨烯的薄层(1-3层)。作为结果,在产生的电流大大增加的情况下,改进了结构的电性能,比初始值高1000倍(从10 -8到10 -5 a)。该过程采用三个步骤进行:Cu纳米颗粒的聚集,无定形碳扩散到Cu中,以及在进一步加热下的Cu纳米颗粒的电迁移。
伦理更多的是发明而不是发现,这种观点并不新鲜。它与某些反现实主义观点有关,而这些观点本身就没有伦理事实。但我的论点并不基于这些观点——我很乐意承认现实主义的图景,其中有伦理事实有待发现。不过,我认为这些事实并不能解决人工智能伦理问题,因为有太多这样的事实,我们该遵循哪些事实取决于我们自己。这一论点部分基于对人工智能的特定考虑,部分基于一般的元伦理考虑。关于第一个问题,我认为人工智能与我们之前遇到的任何事物都不同,我们必须问自己在处理它们时应该使用哪些伦理概念,是我们已经接受的概念,还是更适合我们美丽新世界的新概念。关于第二个问题,我认为这个问题没有正确或错误的答案。所有伦理概念都是一样的;我们只需选择遵循哪一个即可。1. 人工智能
