iMeta 期刊 ( 影响因子 23.8 ) 由宏科学、千名华人科学家和威立出版,主编刘双江和傅静远教授。目标为生物 医学国际综合顶刊群 ( 对标 Nature/Cell) ,任何领域高影响力的研究、方法和综述均欢迎投稿,重点关注生物 技术、生信和微生物组等前沿交叉学科,已被 SCIE 、 PubMed 等收录,位列全球 SCI 期刊前千分之五,微生 物学研究类期刊全球第一;外审平均 21 天,投稿至发表中位数 57 天。 子刊 iMetaOmics ( 主编赵方庆和于君教授 ) 、 iMetaMed 定位 IF>10 的综合、医学期刊,欢迎投稿!
号质量,提高信噪比。特征提取根据特定的BCI范式所设计的心理活动任务相关的神经信号规律,采用时域、频域、空域方法或相 结合的方法提取特征。模式识别通过采用先进的模式识别技术或机器学习算法训练分类模型,针对特定的用户定制特征提取和解 码模型。 3. 控制接口:根据具体的通信或控制应用要求,控制接口把上述解码的用户意图所表征的逻辑控制信号转换为语义控制信号,并由
抽象土壤代表一个复杂而动态的生态系统,拥有无数的微生物,它们在营养循环和有机物转化中共存并起着至关重要的作用。在这些微生物中,细菌和真菌是微生物群落的关键成员,在陆地环境中深刻影响了氮,硫和碳的命运。构成了土壤生态系统的复杂性和微生物群落策划的生物过程,因此需要深入研究其组成和代谢活动。下一代测序和“魔术”技术(例如宏基因组学和元蛋白质组学)的出现,彻底改变了我们对微生物生态学的理解和土壤微生物群落的功能动态。宏基因组学可以鉴定土壤中的微生物群落组成,而元蛋白质组学则阐明了这些社区所执行的当前生物学功能。但是,元蛋白质组学提出了技术和计算的几个挑战。诸如腐殖酸的存在和提取方法中的变化等因素会影响蛋白质产量,而没有高分辨率的质谱和全面的蛋白质数据库限制了蛋白质鉴定的深度。尽管存在这些局限性,MEDAPRO-TEMOMICS仍然是揭示土壤微生物群落的复杂生物学过程和功能的有效工具。在这篇综述中,我们深入研究了土壤研究中元蛋白质组学的方法和挑战,涵盖了诸如蛋白质提取,鉴定和生物信息学分析等方面。此外,我们探讨了元蛋白质组学在土壤生物修复中的应用,强调了其在应对环境挑战方面的潜力。
n-agp的场分布图(| e norm |); (b)AGP的电场分布图(| e Norm |)。
内在语言是一种内化的语言,人们用这种语言思考纯粹的意义。从大脑活动数据中解码内在语言不仅可以促进残障患者的交流,还可以帮助健康人整理思路,提高对元认知的理解。在之前的研究中,一种名为 EEGNet 的 EEG 数据深度学习模型被用于内在语言解码。然而,它在 4 类分类任务中只达到了 30% 的准确率。数据稀缺和内在语言解码固有的难度可能是原因,但这项研究假设以前的研究中特征提取不足。为了提高解码内在语言的准确性,使用迁移学习被认为是更有效的;在这种学习中,模型事先在不同的数据集上进行训练,然后针对目标数据进行微调。然而,迁移学习尚未应用于内在语言,甚至尚未应用于 EEG 数据。迁移学习对不同任务的脑电图数据或非脑电图数据的有效性尚未得到充分验证。本研究通过使用不同任务的脑电图数据和非脑电图数据对公开的内部语音数据集进行迁移学习,验证了特征提取的改进。结果证实,使用来自不同受试者的数据的迁移学习可以提高内部语音的准确性,但使用来自不同任务的脑电图数据的迁移学习则不会。另一方面,对于图像数据集,通过冻结某些层可以确认准确性的提高,即使数据的性质与脑电图数据不同。
引用格式: 李博文 , 李晶晶 , 张龙剑 , 等 . 基于混合集群演化元博弈的海上对空反导杀伤链优选策略研究 [J]. 中国舰船研 究 . DOI: 10.19693/j.issn.1673-3185.04217. LI B W, LI J J, ZHANG L J, et al. Research on optimal selection strategy of surface-to-air anti-missile kill chain based on mixed swarm evolutionary meta-game[J]. Chinese Journal of Ship Research(in Chinese). DOI: 10.19693/j.issn.1673- 3185.04217.
为了处理外部世界的信息,大脑依靠处理系统的层次结构,该系统在早期的新皮层区域启动并在海马上汇聚。该层次结构的组成部分具有明显不同的计算特性,海马支持更快的可塑性并采用更稀疏的表示。在这些系统的属性上进行了广泛的工作,但尚不清楚这些系统首先出现了如何以及为什么。我们使用元学习方法探讨了人工神经网络中处理系统的层次结构的出现。随着网络对一组任务进行优化,它们同时使用的元学习超级参数可以调节层的学习率和稀疏性。我们发现,这种元学习促进了较高的稀疏度。我们证明,互补学习系统的关键方面在网络中出现,并且跨层的稀疏性和学习率的大脑样分化。此外,当经过两种途径并接受了对单个项目识别和分类需求的任务进行训练时,模型捕获了海马内途径之间的不同特性。一起,这些结果表明,大脑中异质学习系统的组织可能是由于优化控制学习率和稀疏性的生物学变量而引起的。
1 )美国国家科学、工程和医学院医学研究所。人非圣贤,孰能无过。华盛顿哥伦比亚特区:美国国家科学院出版社;2001。 2 )美国国家科学、工程和医学院医学研究所。改善医疗保健诊断。华盛顿哥伦比亚特区:美国国家科学院出版社;2016。 3 ) Rajkomar A,Dean J,Kohane I。医学中的机器学习。N Engl J Med 2019;380:1347―58。 4 ) Crombie DL。诊断过程。J Coll Gen Pract 1963;6:579―89。 5 ) Sandler G。临床医学中病史的重要性以及不必要检查的成本。Am Heart J 1980; 100: 928 ― 31。6)Heneghan C,Glasziou P,Thompson M,Rose P,Balla J,Lasserson D 等. 初级保健中使用的诊断策略. BMJ 2009; 338: b946。7)Shimizu T,Tokuda Y. 枢轴和集群策略:预防诊断错误的措施. Int J Gen Med 2012; 5: 917 ― 21。