摘要 必须系统地管理和协调人工智能 (AI) 的使用,以最佳方式支持企业目标并使 AI 为组织创造附加值。这对传统的信息技术 (IT) 管理提出了新的挑战。尽管存在将 AI 作为传统 IT 管理的延伸进行管理的初步方法,但 AI 的管理仍处于起步阶段。因此,我们的研究目标是开发一个综合管理框架,将 AI 成熟度模型研究的见解与总体 AI 管理视角相结合。在多方法和面向设计科学的研究过程中,开发和评估了结合了两种先前模型的 AI 成熟度模型、AI 管理元模型和基于 Web 的 AI 成熟度评估和管理工具。此外,还进行了几项规模较小的研究,以展示如何根据综合 AI 管理框架的不同维度来管理基于 AI 的信息系统。 关键词 1 人工智能、机器学习、成熟度模型、信息技术管理、设计科学研究
全局 BETA 模型 [37*] 树提取 - Bastani、Kim 和 Bastani [38*] 提炼和比较模型 - Tan、Caruana、Hooker 和 Lou [39] 符号元模型 - Alaa 和 van der Schaar [40] 局部 LIME - Ribeiro 等人。 [26] 锚点——Ribeiro、Singh 和 Guestrin [41] 归因全局 PDP——Friedman [42] 特征交互——Friedman 和 Popescu [43] ALE——Apley 和 Zhu [44*] 特征重要性——Fisher、Rudin 和 Dominici Kapelner、Bleich 和 Pitkin [47] QII——Datta、Sen 和 Zick [48] SHAP——Lundberg 和 Lee [49] LOCO——Lei 等人。 [46] INVASE - Yoon, Jordon 和 van der Schaar [50] 全球影响力实例示例 - Cook [51] MMD-critic - Kim, Khanna 和 Koyejo [52] 本地影响力实例 - Cook [51] 无条件反事实解释 - Wachter, Mittelstadt 和 Russell
简单杆、梁等机械部件可以通过提供闭式解的基本力学方法轻松分析。然而,实际部件很少如此简单,设计人员不得不采用不太有效的闭式解近似值、实验或数值方法。工程应用中使用了大量数值技术,数字计算机对此非常有用。在大量使用计算机辅助设计 (CAD) 软件的机械设计中,与 CAD 完美结合的分析方法是有限元分析 (FEA)。该方法的数学理论和应用非常广泛。还有许多可用的商业 FEA 软件包,例如 ANSYS、NASTRAN、Algor 等。本章的目的只是向读者介绍 FEA 的一些基本方面,因此内容非常具有介绍性。有关更多详细信息,建议读者查阅本章末尾引用的许多参考资料。图 19-1 显示了曲轴的有限元模型,该模型用于研究动态弹流润滑对轴承和结构性能的影响。1
1.1 目的 1.1.1 架构是一种进行企业分析、设计、规划和实施的实践,始终采用整体工程方法实施战略。 1.1.2 架构应用原则和实践来指导组织完成实施战略所需的业务/使命、信息、应用程序和技术变更 1 。 1.1.3 良好的架构实践包括使用架构工件来描述、评估、评价和记录架构的相关方面。 1.1.4 北约架构框架 (NAF) 提供了一种开发架构工件的标准化方法,通过定义:• 方法论 - 如何开发架构和运行架构项目(第 2 章),• 观点 - 用于向不同利益相关者传达企业架构的架构视图的构建、解释和使用约定(第 3 章),• 元模型 - 被确定为符合北约政策的商业元模型的应用(第 4 章),以及• 词汇表、参考文献和参考书目(第 5 章)。
1.1 目的 1.1.1 架构是一种进行企业分析、设计、规划和实施的实践,始终采用整体工程方法实施战略。 1.1.2 架构应用原则和实践来指导组织完成实施战略所需的业务/使命、信息、应用程序和技术变更 1 。 1.1.3 良好的架构实践包括使用架构工件来描述、评估、评价和记录架构的相关方面。 1.1.4 北约架构框架 (NAF) 提供了一种开发架构工件的标准化方法,通过定义:• 方法论 - 如何开发架构和运行架构项目(第 2 章),• 观点 - 用于向不同利益相关者传达企业架构的架构视图的构建、解释和使用约定(第 3 章),• 元模型 - 被确定为符合北约政策的商业元模型的应用(第 4 章),以及• 词汇表、参考文献和参考书目(第 5 章)。
进行了混合实验-数值研究,以建立在加压飞机机身中存在或不存在多点损伤 (MSD) 的情况下的实用裂纹扭结标准。修改了 Ramulu-Kobayashi 裂纹扭结标准,以预测沿 MSD 线的自相似裂纹扩展以及随后在撕裂带附近的扭结。进行了仪器化双轴试验样品和小型机身断裂实验,以生成裂纹扭结和裂纹速度数据,然后将其输入到断裂样品的大变形弹性动力学有限元模型中。计算出的混合模式 I 和 II 应力强度因子以及扩展裂纹之前的大轴向应力用于评估自相似裂纹扩展和裂纹轨迹上的裂纹扭结标准。预测和测量的裂纹扭结角度和位置之间具有极好的一致性。通过计算和测量的应变计数据的匹配进行了额外的验证。
通过(TSV)技术利用同轴性通过Silicon,提出了紧凑的低通滤波器(LPF)。首先,通过分析计算,有限元方法(FEM)模拟和测量,研究了基于同轴TSV的几个电容器。其次,提出并通过FEM模拟和测量结果对基于同轴TSV的螺旋感应的电感式的公式进行了验证。最后,提出了基于基于TSV的电容器和电感器的研究,提出了基于2×4、2×5、2×6和2×7同轴TSV阵列的提议𝐿𝐶LPFS的分析模型,并且在AD和HFF中建立了等效电路模型以及在ADS和HFSS中的有限元模型(FEM)模型。LPF通过测量进行制造和验证。在建议的LPF中,同时使用同轴TSV作为电容器和电感器,这会导致更紧凑的大小。电感器的寄生能力可以帮助诱导拟议的LPF在停止带中诱导一个缺口,并提高滚动速率。
本文提出了一种基于全局-局部建模方法的轻型结构多尺度优化策略。该方法应用于民用飞机的实际机翼结构。机翼的初步设计可以表述为一个约束优化问题,涉及结构不同尺度的若干要求。所提出的策略有两个主要特点。首先,问题以最一般的意义来表述,包括每个问题尺度所涉及的所有设计变量。其次,考虑两个尺度:(i)结构宏观尺度,使用低保真度数值模型;(ii)结构中观尺度(或组件级),涉及增强模型。特别是,结构响应在全局和局部尺度上进行评估,避免使用近似分析方法。为此,完全参数化的全局和局部有限元模型与内部遗传算法交互。只为结构最关键的区域创建精炼模型,并通过专用的子建模方法链接到全局模型。
21世纪见证了供应链(SC)转变为复杂的全球网络。虽然对世界经济至关重要,但这些SC仍然容易受到暴露透明度,沉默和效率挑战的中断[7,4]。除了技术进步之外,公司必须解决有关数据共享的知名度有限,大数据复杂性,技术技能障碍和信任的问题[8,1,5]。知识管理概念(例如知识图)通过系统地组织信息来提供有希望的解决方案。研究证明了各种SC应用中知识图的潜力,包括动力设备,铁路运输和半导体行业[13、9、11]。本文提出了一个知识图,该知识图带有本体论主链,用于支持链和操作映射。所提出的方法首先定义控制知识图的本体,并充当其工作的一种元模型。在查询效率,可解释性和简单性方面,将方法与典型的数据存储解决方案进行了比较。提议的
电池储能系统(BESS)技术的有效应用可以有效地减轻分布式世代(DGS)和负载引起的不确定性和波动性,并减少对电网的不良影响。更多有效的应用程序可能会延迟设备容量升级,改善设备利用率,节省成本并增加可再生能源的系统托管能力。但是,BES的应用受到其高成本和有限的政策支持的限制。 因此,有必要考虑其灵活性和可靠性的改善,以及激励政策研究以促进其部署。 这项关于BES的研究涉及四个关键方面:1)考虑到国民经济中电的价值,它提出了贝丝的可靠性抗元模型。 2)它描述了BES的灵活性改进的收益计算模型,该模型是根据与BESS相关的分配网络的灵活性索引构建的,并考虑了能力,电荷和放电约束。 3)建立了BESS的可靠性提高的收益计算模型,本研究提出了考虑净现值(NPV)指数(NPV)指数和动态投资回收期(DPP)指数的BESS用户的经济评估模型的详细计算流。 4)对贝斯商业模式的不同价格和激励政策的影响分析也进行了,本研究最终提出了基于灵活性和可靠性改善的激励政策。但是,BES的应用受到其高成本和有限的政策支持的限制。因此,有必要考虑其灵活性和可靠性的改善,以及激励政策研究以促进其部署。这项关于BES的研究涉及四个关键方面:1)考虑到国民经济中电的价值,它提出了贝丝的可靠性抗元模型。2)它描述了BES的灵活性改进的收益计算模型,该模型是根据与BESS相关的分配网络的灵活性索引构建的,并考虑了能力,电荷和放电约束。3)建立了BESS的可靠性提高的收益计算模型,本研究提出了考虑净现值(NPV)指数(NPV)指数和动态投资回收期(DPP)指数的BESS用户的经济评估模型的详细计算流。4)对贝斯商业模式的不同价格和激励政策的影响分析也进行了,本研究最终提出了基于灵活性和可靠性改善的激励政策。IEEE 33节点测试系统的结果表明,灵活性和可靠性提高可以有效地反映BES的好处和成本,并且激励政策可以帮助促进Bess技术的发展。