精确肿瘤学的快速增长的领域通常致力于根据其临床表型和基因型来确定针对个体患者量身定制的个性化癌症治疗计划,其特征是分子分析[1]。实际上,确定这些治疗方法依赖于专家医学知识的独特组合,来自患者的整个临床和基因组病史的数据,以及在知识库,元知识基础和出版文献中记录的建议和最新发现。这最后一个组件是时间密集型,即使对于专家来说,也有很大的兴趣,即开发自动化的知识生成方法,目的是将文献变成(可行的)知识。最近的生成人工智能的激增引起了人们对高级大语模型(LLM)在生物医学上的应用,但是很少有组织拥有训练或调整这些模型的特定任务的资源。检索提示世代(RAG)[2]的技术可以代表一个中间立场,其中搁置的(开源或专有)LLM与Contextual 1相应的作者配对:Johns Hopkins University,Baltimore,Baltimore,MD,MD,United States,United States,美国MD;电子邮件:kkreime1@jhu.edu。
摘要 在全球范围内,人工智能 (AI) 是快速发展的技术领域的一项进步。它是数字科学的一项突破,解决了当前存在的几个复杂难题。可用的元知识的元分析可以在很短的时间内用一种易懂的语言简化。因此,人工智能可能在法医牙科 (FO) 中发挥重要作用。FO 涉及在刑事或民事诉讼中对牙科证据的检查、评估、管理和呈现,所有这些都是为了司法利益。它是法医科学的重要组成部分,在识别活着或死去的个人方面发挥着根本作用。在获取、分析和报告证据方面,数字取证已经有效可靠地取代了传统的法医调查。数字法医调查的应用在大规模灾难、个人身份识别、年龄估计以及与其他法医牙医的交流中非常有用。各种利益相关者可能能够为法医牙科中广泛有效地使用人工智能做出贡献,包括全科牙科医生、牙科放射科医生、法医牙医、全科病理学家、口腔病理学家、生物医学工程师、数据科学家和政府法定机构。因此,本文的目的是尝试概述各种利益相关者在未来将人工智能应用于法医牙科中可能发挥的作用。
课程代码:CSE2351 学分:03 课程目标:开发基于语义和上下文感知的系统,以获取、组织流程、共享和使用嵌入在多媒体内容中的知识。研究旨在最大限度地实现整个知识生命周期的自动化,并实现 Web 资源和服务之间的语义互操作性。机器人领域是一个多学科领域,因为机器人是一个极其复杂的系统,包括机械、电气、电子硬件和软件以及与所有这些相关的问题。模块-I 人工智能问题、人工智能基础和人工智能智能代理的历史:代理和环境、理性概念、环境性质、代理结构、问题解决代理、问题表述。模块-II 搜索- 搜索解决方案,统一搜索策略 - 广度优先搜索、深度优先搜索。使用部分信息进行搜索(启发式搜索)爬山法、A*、AO* 算法、问题简化、游戏对抗搜索、游戏、极小-最大算法、多人游戏中的最佳决策、游戏中的问题、Alpha-Beta 剪枝、评估函数。模块 III 知识表示问题、谓词逻辑-逻辑编程、语义网络-框架和继承、约束传播、使用规则表示知识、基于规则的推理系统。不确定性下的推理、概率回顾、贝叶斯概率干扰和邓普斯特沙弗理论。模块 IV 一阶逻辑。一阶逻辑中的推理,命题与一阶推理,统一与提升,前向链接,后向链接,解析,从观察中学习,归纳学习,决策树,基于解释的学习,统计学习方法,强化学习。模块-V 专家系统:- 简介,基本概念,专家系统的结构,专家系统中的人为因素,专家系统的工作原理,专家系统解决的问题领域,专家系统的成功因素,专家系统的类型,专家系统与互联网交互,知识工程,知识范围,困难,知识获取方法,机器学习,智能代理,选择合适的知识获取方法,人工智能中的社会影响推理,规则推理,框架:基于模型的推理,基于案例的推理,解释和元知识推理,不确定性表示不确定性。