近年来,文献中提出了越来越多的被动辐射冷却材料,由于其独特的稳定性,无毒性和可用性,其中有几个示例依赖于使用二氧化硅(SIO 2)。尽管如此,由于其散装声子 - 孔子带,Sio 2在大气透明度窗口内呈现出明显的反射峰(8-13μm),从而导致发射率降低,这构成了挑战,以实现对亚物种的次级辐射辐射冷却的标准。因此,该领域的最新发展专门用于设计Sio 2光子结构的设计,以增加散装SIO 2辐射冷却器的冷却潜力。本综述旨在通过评估其冷却效率及其可扩展性来确定SIO 2辐射发射器的最有效的光子设计和制造策略,从而对各种类型的各种类型的sio 2 radiative Coolers sio(数值和实验)进行了深入的分析。
在过去的几十年中,量子技术领域一直在迅速扩展,产生了许多应用,例如量子信息,量子通信和量子网络安全。在这些应用的核心上是量子发射极(QE),这是单个光子或光子对的确切可控的发电机。半导体QE,例如钙钛矿纳米晶体和半导体量子点,作为纯单个光子的发射器表现出很大的希望,当用等离子体型纳米腔杂交时,具有产生光子对的潜力。在这项研究中,我们开发了一个系统,在该系统中,可以以可控的方式与外部等离子跨表面进行交互之前,期间和之后,可以追溯到单个量子发射器及其集合。将外部等离质元面耦合到量化量阵列后,单个QES从单光子发射模式切换到多光子发射模式。值得注意的是,该方法保留了QE的化学结构和组成,使它们可以在与等离子次曲面解耦后恢复至初始状态。这显着扩大了半导体QE在量子技术中的潜在应用。
metasurfaces由于使用定期布置的纳米结构,可以随意调节电磁波,因此为下一代光学设备打开了通往下一代光学设备的门。然而,元时间通常具有固定的纳米结构几何形状的静态光学响应,这通过替换常规的光学组件来实施向技术的过渡带来挑战。为了解决此问题,液晶(LCS)已被积极地用于使用可调节的双折射物实时设计可调的跨面。在这里,我们回顾了有关LC可调式元面的最新研究,这些研究被归类为波前调整和光谱调整。与对可调式跨面的众多评论相比,该评论深入探讨了LC集成的元整日的最新发展。在这篇综述结束时,我们简要介绍了有关LC驱动的元信息的最新研究趋势,并提出了改善LCS的进一步说明。我们希望这篇评论能够加速新的和创新的LC-POW设备的开发。
metasurfaces由于使用定期布置的纳米结构,可以随意调节电磁波,因此为下一代光学设备打开了通往下一代光学设备的门。然而,元曲面通常具有固定几何形状的纳米结构的静态响应,这通过替换常规的光学组件来实施向技术的过渡带来挑战。为了解决此问题,液晶(LCS)已被积极地用于使用可调节的双折射物实时设计可调的跨面。在这里,我们回顾了有关LC可调式元面的最新研究,这些研究被归类为波前调整和光谱调整。与对可调式跨面的众多评论相比,该评论深入探讨了LC集成的元整日的最新发展。在这篇综述结束时,我们简要介绍了有关LC驱动的元信息的最新研究趋势,并提出了改善LCS的进一步说明。我们希望这篇评论能够加快新型和创新的LC设备的开发。
摘要:元时间最近在光学研究中占据着突出性,提供了独特的功能,可用于成像,束形成,全息,偏光法等,同时保持设备尺寸较小。尽管已经在文献中对大量基本的跨表面设计进行了彻底的研究,但随着跨面相关论文的数量仍在快速增长,因为跨表面研究现在正在扩展到相邻的领域,包括计算成像,增强现实,增强和虚拟的现实,自动化,自动化,自动化,量子,量子,数量,量子,量和替代量。同时,元信息在更紧凑的光学系统中执行光学功能的能力引发了各种行业的强大而不断增长的兴趣,这些行业从低成本以低成本的光电系统中的微型化,功能高的光学组件的可用性中受益匪浅。这为Metasurfaces领域创造了一个真正独特的机会,从而使科学和工业产生影响。该路线图的目的是标志着元图研究的“黄金时代”,并定义了未来的方向,以鼓励科学家和工程师推动跨境领域的研究和发展,以实现科学卓越和广泛的工业采用。关键字:元图,金属,平面光学,逆和拓扑设计,计算成像,可调式跨面,新概念,新兴材料平台,大规模纳米构造,Metasurface应用
摘要:Terahertz(THZ)连续波(CW)光谱系统可以通过拍摄高性能电信(1530-1565 nm)激光器来提供极高的光谱分辨率。然而,这些系统中的典型THZ CW检测器使用狭窄的带隙光电导体,这些光接合器需要精心生长并产生相对较大的检测器噪声。在这里,我们证明了纳米结构的低温种植GAA(LT-GAAS)的跨表情中的两步光子吸收,该元面可在大约一个picsecond中切换光导率。我们表明,尽管带隙是电信激光光子能量的两倍,但LT-GAA可以用作CW THZ检测器中的超快光电自动导体。元图设计利用了LT GAAS谐振器中的MIE模式,而THZ检测器的金属电极可以设计以支持附加的光子模式,从而进一步增加了所需波长下的光电导率。
摘要:元时间最近在光学研究中占据着突出性,提供了独特的功能,可用于成像,束形成,全息,偏光法等,同时保持设备尺寸较小。尽管已经在文献中对大量基本的跨表面设计进行了彻底的研究,但随着跨面相关论文的数量仍在快速增长,因为跨表面研究现在正在扩展到相邻的领域,包括计算成像,增强现实,增强和虚拟的现实,自动化,自动化,自动化,量子,量子,数量,量子,量和替代量。同时,元信息在更紧凑的光学系统中执行光学功能的能力引发了各种行业的强大而不断增长的兴趣,这些行业从低成本以低成本的光电系统中的微型化,功能高的光学组件的可用性中受益匪浅。这为Metasurfaces领域创造了一个真正独特的机会,从而使科学和工业产生影响。该路线图的目的是标志着元图研究的“黄金时代”,并定义了未来的方向,以鼓励科学家和工程师推动跨境领域的研究和发展,以实现科学卓越和广泛的工业采用。关键字:元图,金属,平面光学,逆和拓扑设计,计算成像,可调式跨面,新概念,新兴材料平台,大规模纳米构造,Metasurface应用
Design of Selective Metasurface Filter for Thermophotovoltaic Energy Conversion Rajagopalan Ramesh, 1, 2,* Qing Ni, 1, 3 Hassan Alshehri, 1, 4 Bruno Azeredo 2 and Liping Wang 1,* Abstract Optical filters with narrow transmission band above the bandgap of thermophotovoltaic (TPV) cells are not restrained by the rigorous thermal reliability as needed for发射器。在这项工作中,提出了一种由石英底物上的铝纳米(ALNP)阵列制成的新型跨表面滤波器,以在TPV单元的带隙上方实现频谱选择性传输。光学模拟,以确定适当的ALNP周期,直径和高度,以使所得的纳米阵列阵列将在1.9μm的波长下显示窄带传输,该波长接近抗抗氧化和抗氧化衣(GASB)TPV Cell的带状频率。窄带传输增强率可以归因于相邻的Al纳米柱之间的磁极(MP)共振。通过电感能力电路电路模型以及纳米时期,直径,高度以及入射角的影响进一步证实了MP机制。此外,评估了与ALNP MetaSurface滤波器结构增强的TPV性能,还评估了对燃气TPV电池的开路电压,短路电流密度,输出电力和转换效率。
Design of Selective Metasurface Filter for Thermophotovoltaic Energy Conversion Rajagopalan Ramesh, 1, 2,* Qing Ni, 1, 3 Hassan Alshehri, 1, 4 Bruno Azeredo 2 and Liping Wang 1,* Abstract Optical filters with narrow transmission band above the bandgap of thermophotovoltaic (TPV) cells are not restrained by the rigorous thermal reliability as needed for发射器。在这项工作中,提出了一种由石英底物上的铝纳米(ALNP)阵列制成的新型跨表面滤波器,以在TPV单元的带隙上方实现频谱选择性传输。光学模拟,以确定适当的ALNP周期,直径和高度,以使所得的纳米阵列阵列将在1.9μm的波长下显示窄带传输,该波长接近抗抗氧化和抗氧化衣(GASB)TPV Cell的带状频率。窄带传输增强率可以归因于相邻的Al纳米柱之间的磁极(MP)共振。通过电感能力电路电路模型以及纳米时期,直径,高度以及入射角的影响进一步证实了MP机制。此外,评估了与ALNP MetaSurface滤波器结构增强的TPV性能,还评估了对燃气TPV电池的开路电压,短路电流密度,输出电力和转换效率。
,一个光子工程小组,桑坦德大学,39005,西班牙B Ciber debioingeniería,生物群岛,Y纳米甲基甲虫,萨鲁德·卡洛斯III,马德里,28029,西班牙西班牙C c Instition de InvestiTo deResjuctivaciónHealthHealth Valinevalinevalain valenticala(Idialla),39011。帕拉联邦大学工程系,邮政信箱8619,阿肯西亚UFPA,贝莱姆,66075-900,巴西和电气与计算机工程学院,坎普纳斯大学坎皮纳斯大学,坎皮纳斯大学,13083-852,巴西坎皮纳斯大学,巴西f电气与信息工程系Sannio,Benevento,82100,意大利H国家研究委员会,微电子和微系统研究所,通过Del Fosso del Cavaliere 100,罗马,00133,意大利,一个光子工程小组,桑坦德大学,39005,西班牙B Ciber debioingeniería,生物群岛,Y纳米甲基甲虫,萨鲁德·卡洛斯III,马德里,28029,西班牙西班牙C c Instition de InvestiTo deResjuctivaciónHealthHealth Valinevalinevalain valenticala(Idialla),39011。帕拉联邦大学工程系,邮政信箱8619,阿肯西亚UFPA,贝莱姆,66075-900,巴西和电气与计算机工程学院,坎普纳斯大学坎皮纳斯大学,坎皮纳斯大学,13083-852,巴西坎皮纳斯大学,巴西f电气与信息工程系Sannio,Benevento,82100,意大利H国家研究委员会,微电子和微系统研究所,通过Del Fosso del Cavaliere 100,罗马,00133,意大利,一个光子工程小组,桑坦德大学,39005,西班牙B Ciber debioingeniería,生物群岛,Y纳米甲基甲虫,萨鲁德·卡洛斯III,马德里,28029,西班牙西班牙C c Instition de InvestiTo deResjuctivaciónHealthHealth Valinevalinevalain valenticala(Idialla),39011。帕拉联邦大学工程系,邮政信箱8619,阿肯西亚UFPA,贝莱姆,66075-900,巴西和电气与计算机工程学院,坎普纳斯大学坎皮纳斯大学,坎皮纳斯大学,13083-852,巴西坎皮纳斯大学,巴西f电气与信息工程系Sannio,Benevento,82100,意大利H国家研究委员会,微电子和微系统研究所,通过Del Fosso del Cavaliere 100,罗马,00133,意大利