对被忽视和未充分利用的农作物(NUC)的探索对于解决全球粮食不安全感确实至关重要。这些营养丰富的气候富农作物通常被忽略的商业价值有限,是打击营养不良和提高粮食安全的关键,尤其是在脆弱地区。这些农作物先前尚未归类为主要农作物,主要是构成了小农户农业区,是营养丰富,气候缓解且局部适应性的(Li and Siddique,2020; Mudau等,2022)。这些农作物的侵蚀可能会阻碍穷人的营养状况和粮食安全,并且它们的更多使用可以增加营养并赋予隐藏的饥饿(Dansi等,2012; Ojuederie等,2015; Joy and Siddhuraju,2017年)。至关重要的是,我们认识到这些农作物的隐藏潜力并利用它们实现更可持续的未来。这项社论聚焦有希望的研究,展示了NUC的隐藏潜力并通过现代进步探索其利用。在本社论中展示的有关研究主题的研究范围“被忽视和未充分利用的农作物物种可持续食品和营养安全:前景和隐藏的潜力”令人印象深刻,涵盖了这些农作物的各个方面,从基因改进到其在不同领域的潜在应用。研究主题由9个出版物组成:6篇原始研究文章和3条评论,重点介绍了一些NUC在应对全球食品和营养挑战时的遗传改善,保护和利用。柑橘grandis(L.)Osbeck,通常称为Pomelo,是一种未充分利用的柑橘类水果,其潜力作为豆酮,苯酚和抗氧化剂的来源,被忽略了。
扩展数据图 1. 使用 RFdiffusion 设计 β 链配对支架。为了充分利用 RFdiffusion 的多样化生成潜力,同时鼓励在设计输出中使用 β 链界面,我们实现了一种界面调节算法,该算法可根据简单的用户输入生成 SS/ADJ 调节张量。该模型以张量的形式理解折叠调节,这些张量标记每个残基(a,顶部和左侧)的二级结构(蓝色)以及这些二级结构块的邻接关系(a,黄色中心)。用户指定的参数指定了以下信息:结合剂界面二级结构块(在本例中为 β 链)、该块的长度(b,结合剂张量 L 中的青色块)以及结合剂块相邻的靶位残基(b,靶位张量 T 中的青色块)。根据这些预定义参数,该算法随机采样结合剂界面二级结构块在残基索引空间中的位置,同时保持与指定靶位残基的确定邻接关系(绿色)。该用户定义的调节张量将扩散输出导向β链配对的结合物-靶标界面 (c)。此前,RFdiffusion 界面设计计算可以针对指定为靶标“热点”的特定残基,以指定要结合的靶标残基。而这种新的链间 SS/ADJ 调节功能,使用户能够在结合物支架生成过程中指定“β链热点”或“ɑ-螺旋热点”。基于扩展的结合物-靶标 SS/ADJ 张量调节的结合物支架输出,支持用户指定 β 链界面类型的设计。
在气候变化、害虫和病原体蔓延、世界人口不断增长的粮食需求以及农药使用对环境造成巨大影响的背景下,Flors 等人 ( 1 ) 在《科学前沿》上发表的头条文章提出了一种替代的创新理念,即以环保高效的方式利用植物的内在恢复能力来应对这些挑战。这篇及时的文章强调了诱导抗性 (IR) 现象,这是植物对病原体和/或食草动物攻击的免疫反应的一部分。目前,研究人员的主要目标是减少甚至取代合成化学农药的使用,以可持续、生态和经济可行的方式保护生物多样性,并最大限度地减少对土壤和地下水的有害影响。Flors 等人 ( 1 ) 提出,内源性的植物防御机制通常比使用农药等更环保、更高效、更有针对性,从而为未来减少对农药的依赖提供了动力。我们支持作者的想法,并提供我们的观点和一些批判性考虑,希望这将有助于推动这一进程。
该项目调查了生成AI模型在协助健康科学图书馆员进行收集开发方面的潜力。Chapman大学的Harry和Diane Rinker Health Science Campus的研究人员评估了四种生成AI模型,即Chatgpt 4.0,Google Gemini,Perpelxity和Microsoft Copilot-从2024年3月开始六个月。使用了两个提示:一个是在特定的健康科学领域生成最新的电子书标题,另一个用于确定现有收藏中的主题差距。第一个提示揭示了跨模型的不一致之处,副驾驶和困惑提供了来源,也提供了不准确性。第二提示得出了更有用的结果,所有模型均提供有用的分析和准确的国会电话号码库。这些发现表明,由于不准确和幻觉,大型语言模型(LLM)尚未作为收集开发的主要工具可靠。但是,它们可以用作分析主题覆盖范围并确定健康科学收集差距的补充工具。
该项目调查了生成AI模型在协助健康科学图书馆员进行收集开发方面的潜力。Chapman大学的Harry和Diane Rinker Health Science Campus的研究人员评估了四种生成AI模型,即Chatgpt 4.0,Google Gemini,Perpelxity和Microsoft Copilot-从2024年3月开始六个月。使用了两个提示:一个是在特定的健康科学领域生成最新的电子书标题,另一个用于确定现有收藏中的主题差距。第一个提示揭示了跨模型的不一致之处,副驾驶和困惑提供了来源,也提供了不准确性。第二提示得出了更有用的结果,所有模型均提供有用的分析和准确的国会电话号码库。这些发现表明,由于不准确和幻觉,大型语言模型(LLM)尚未作为收集开发的主要工具可靠。但是,它们可以用作分析主题覆盖范围并确定健康科学收集差距的补充工具。
Park 表示,Base Therapeutics 受益于强大的研究环境和广泛的商业网络。“我们还获得了政府的广泛支持,包括税收优惠、研发资金和人才引进政策,这些对于吸引像 Base Therapeutics 这样的 I&T 公司落户香港至关重要,”徐说。“投资推广署为我们在香港的设立和扩张提供了宝贵的支持。他们的服务确保了更平稳的过渡,并使我们能够在这个充满活力的生态系统中茁壮成长。”
在过去的几十年中,摘要的农业生物多样性一直处于危险之中,并且已经呼吁扭转这种趋势,这不仅是通过保护措施,而且还通过增加了农农作物作物的使用。本文重点介绍零售业,尤其是餐馆的作用,在消费者对被忽视和未充分利用的农作物(NUC)(NUC)的需求振兴。鉴于私营部门参与者(例如餐馆)的商业取向,它旨在更好地了解(中价)餐厅老板如何为NUC赋予价值,同时使他们的业务经济发展。为此,它使用商业模型画布中详细说明的类别探讨了评估理论强调的评估和价值的两个“时刻”。对罗马的七名餐馆老板进行深入访谈的结果,他们在菜单中使用NUC,显示出“中断”的估值过程。在此过程中,在评估时刻,餐馆老板共同建设的价值并未尽可能地传递给消费者,从而限制了消费者了解NUC并可能增加NUC需求的能力。对与可持续性相关的其他方面“重视”高于其他方面的整体文化和制度环境在限制NUC的价值中起作用,从而使需要修改这种主要标准以更好地反映NUC的价值。
随着电动汽车销量的增长,对电池的需求也随之增长,生产电池所需的矿物的需求也随之增长。开采这些矿物(包括锂、镍、钴、铜和铝)会带来社会和环境成本(Del Pero、Delogu 和 Pierini 2018;RioFrancos 等人 2023)。尽量减少所需的矿物量可以避免不必要的采矿和精炼活动及其相关影响,同时还可以继续支持向电动汽车的快速过渡以及强大而有弹性的电池相关矿物供应链。本报告量化了使用多种策略减少轻型运输 1 矿物需求的潜力,包括电池回收、提高车辆效率、适当调整车辆续航里程、技术创新和增加出行选择。结果表明,通过明智的政策、投资和行业领导,未来二三十年内,超过 150 万公吨的开采材料可能会留在地下。通过在电气化的同时尽量减少采矿并最终主要依靠再生材料,我们创造了更具弹性、公正和可持续的供应链和能源未来。
TDK 企业在 2025 年 CES 上为人工智能新时代铺平道路 ● TDK 将 AI、绿色转型和数字化转型确定为未来十年的大趋势 ● 关键发展包括用于节能 AI 计算的“自旋忆阻器”和集成边缘传感、组件和 AI 功能的工业 4.0 解决方案的 TDK SensEI 的形成 ● 为汽车、工业、能源和 ICT 领域提供尖端解决方案 ● 战略合作伙伴关系包括与 NEOM McLaren Formula E 车队在赛车创新方面的技术合作,以及即将发布的视障人士无障碍产品 2024 年 12 月 10 日 TDK 公司 (TSE: 6762) 将于 2025 年 1 月 7 日至 12 日在内华达州拉斯维加斯举行的年度消费电子展 (CES) 上展出。总部位于东京的 TDK 公司是智能社会电子解决方案的全球领导者之一,正在拥抱人工智能的崛起。预计未来十年该领域将快速增长,因此该公司正在制定创新和业务战略,以充分利用人工智能的潜力。TDK 还强调绿色转型和持续数字化是塑造其未来重点的关键全球趋势。在拉斯维加斯会议中心中央大厅的 15815 号展位上,TDK 展示了其新制定的长期愿景“TDK 转型:加速转型,实现可持续未来”。通过其创新产品,TDK 致力于推动技术进步并促进有意义的社会转型。为了实现这一目标,TDK 不断突破创新的界限,专注于先进材料、尖端制造工艺以及提高客户应用中的产品性能。人工智能已经改变了日常生活的许多方面,并将继续影响行业、自动化和技术。TDK 的解决方案旨在解决人工智能应用面临的关键挑战,例如高功耗,从而实现更高效和更广泛的使用。通过结合传感器融合、先进组件、软件和人工智能,TDK 能够推动创新并改变其主要市场,包括汽车、工业和能源以及 ICT。关键行业的变革性解决方案 ● 汽车:TDK 为电动汽车和高级驾驶辅助系统 (ADAS) 提供广泛的尖端解决方案组合。该公司的全面展示展示了其全系列的组件和传感器技术,特别强调了其 6 轴 IMU 和压电 MEMS 镜技术。 ● 工业和能源:TDK 的集成方法结合了人工智能、传感器融合和先进组件,以推动环境可持续性发展并应对关键的工业挑战,优化能源效率,提高生产力并促进可持续实践。值得关注的创新包括其柔性薄膜压电传感器解决方案和超声波飞行时间传感器。● ICT:TDK 将展示旨在实现更智能、更可靠、更环保的通信系统的解决方案,包括先进的高精度定位传感器和用于直接视网膜投影的超紧凑全彩激光模块,这些技术有望彻底改变增强和虚拟现实体验。
东北俄亥俄州传媒体协会2025年冬季网络研讨会系列1月8日 - 戴夫·托马什夫斯基(Dave Tomashefski)用柔软的着陆花园在树下种植柔软的着陆花园来充分利用您的树木,这是支持院子里生物多样性的最佳方法之一。加入Meadow City的Dave Tomashefski本地植物托儿所,了解软着陆花园如何支持蝴蝶和飞蛾完成其生命周期(以及更多!)这个研讨会是最大程度地利用树木覆盖物在生长空间中的好处的绝佳机会。作为Meadow City的教育专家,Dave Tomashefski负责托儿所的教育计划和材料。他的礼物是为每个人找到理想的植物!在克利夫兰共同创立了Meadow City之前,Dave在俄亥俄州立大学的土壤,水和环境实验室工作,在那里他还获得了硕士学位。1月22日 - 俄亥俄州后院的Denise Ellsworth Wild Bees许多园丁在看到一个蜜蜂时就知道一个蜜蜂,但是其他400多种将俄亥俄州回家的400多种蜜蜂呢?该计划将重点放在一些最常见的蜜蜂上,包括它们引人入胜的生物学和生活史。我们还将讨论植物选择和景观实践,以支持我们的本地传粉媒介。为什么大黄蜂会振动其机翼肌肉,以中间C的音调?蜜蜂世界中的皇后有多罕见?为什么叶切蜜蜂从叶子和花瓣上切下圆盘?这些本地蜜蜂对授粉和生物多样性有多重要?丹妮丝通过俄亥俄州立大学昆虫学系指导传粉媒介教育计划,她自2012年以来一直担任的职位。在她的扩展和外展工作中,丹尼斯通过各种研讨会,网络研讨会,书面材料和电子资源来支持和教全州养蜂人,农民,园丁和其他人。在进入昆虫学之前,丹妮丝(Denise)在阿克伦(Akron)/广州地区担任农业和自然资源县推广教育家,曾担任园艺,综合有害生物管理和环境教育。除了追逐蜜蜂外,丹妮丝还与丈夫和狗一起沿着塔斯卡拉瓦斯河沿着托斯卡拉瓦斯河沿着拖车小径远足。