摘要:在实现精确电池的过程中,测量结果的生成和基于这些结果的发现起着重要作用。虽然循环寿命测试耗时且昂贵,但它们可以提供支持和重要信息。特别是在当前加速充电过程的主题中,了解不同的充电电流如何影响不同类型的电池非常重要。CC CV 充电方法仍然是最常见、最广泛使用的方法。因此,本文进行了长期循环测试,以阐明电池制造商推荐的不同充电电流的影响。研究和比较了常见的高能量和高功率圆柱形锂离子电池。除了充电协议对老化、充电时间和发热的影响外,还考虑了对电池分散的影响以及对充电过程的恒定电流和恒定电压部分的影响。从结果可以看出,被研究的电池在响应增加的充电电流时的行为有多么不同。即使是看似相似的电池,老化行为也会有显著差异。
由于环境干燥,聚合物钽电容器 (PTC) 中的异常充电电流 (ACC) 可能导致太空系统发生故障或失效。目前,没有标准指标来评估这种影响,影响 ACC 的因素也不太清楚。本文讨论了用于揭示 ACC 的不同方法的优缺点,包括恒定电压斜坡和恒定电流应力,并建议将功率浪涌测试 (PST) 作为筛选和鉴定太空应用 PTC 的程序。建议的测试类似于目前用于 MnO2 钽电容器的浪涌电流测试,但可确保在整个测试过程中零件中的高功率耗散。使用各种类型的电容器,估计了不同制造批次的 PTC 以及批次内样品之间的测试结果的可重复性。评估了水分含量、测试温度、应力电压和预处理的影响。使用红外摄像机通过实验研究了与 ACC 相关的热效应和灾难性故障的可能性,并在绝热加热条件下进行了计算。讨论了该现象的可能机制,并提出了避免与 ACC 相关的故障的测试建议。
1. 充电过程 IU5365E 采用完整的涓流充电、恒流充电、过充电、浮充 电四个过程进行充电。当电池电压小于涓流点时,系统以 I *20% 充电电流充电;当电池的电压大于涓流点时,系 C C 统以 I 充电电流充电;当电池电压达到所设定的过充电电 CC 压值 , 充电电流逐渐减小,当电流减小到所设定的过充电 结束电流值时,过充电结束,系统进入到浮充电过程 , 浮 充电电压为过充电电压V 的 90% 。 OC 浮充电模式的存在可以弥补由于电池自放电或者负载耗电 所导致的电池能量损失。在浮充电状态,如果输入电源和 电池仍然连接在充电器上,电池电压仍然逐渐下降到所设 置的过充电电压V 的 85% 时,系统会重新恢复充电状态。 OC
1.充电模式 FM5012D 用线性方式对电池进行涓流 / 恒流 / 恒压三段式充电。当电池电压低于 V TRKL 时进行涓流充 电;当电池电压高于 V TRKL 时进行恒流充电;当电池电压接近 V BAT-REG 时进行恒压充电,此时充电电流 开始逐渐减小,当电流减小到 I FULL 时,判断电池已经充饱,芯片终止充电,待电池电压降低到 V RECHG 后进行再次充电 (Recharge) 。 2.充电软启动功能 当开始给电池充电时,芯片会控制充电电流逐渐增大到设定值,避免了瞬间大电流冲击引起的各种 问题。 3.充电电流设定 充电电流由内部电路设定为恒流 600 mA, 涓流充电为 60mA, I FULL 为 90 mA 可编程设置充饱电压为 500 mA, 涓流充电为 50mA , I FULL 为 75 mA 当输入供电不足或芯片温度过高时, I IN-LIM 会下降。 4.充饱电压设定 FM5012D 芯片默认充饱电压值为 4.20V 可编程设置充饱电压值为 4.35V 5.输入过压保护 输入电压过高,超过 V IN-OVP 时,芯片会控制关闭充电和升压输出,防止芯片和负载因为过压而损 坏,输入电压正常后充电恢复,风扇驱动输出 FAN 不恢复。 6.充电限流保护 当芯片 VIN 端口电压低于 4.7V 时,芯片进入 VIN 限流状态,充电电流逐渐减小,直至到零。 SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS
当 HV 脚施加大于 40V 的电压时,内部高压电流源 对 V CC 脚外接的电容充电。为防止 V CC 在启动过程中短 路引起的功率损耗而使 IC 过热损坏,当 V CC 电压低于 1V 时,高压电流源的充电电流被限制为 I HV1 ( 1mA )。 当 V CC 大于 1V 后,高压电流源的充电电流变为 4mA_min , V CC 电压会迅速上升。当 V CC 超过启动水平 V CC_ON 时,高压启动电流源关闭。同时, UVLO 置高有 效, IC 内部电路开始工作。
TMI4054 是一款完整的恒流和恒压线性充电器,适用于单节锂离子电池应用。默认电池充电电压固定为 4.2V,充电电流可通过 PROG 引脚上的外部电阻器进行编程。通过良好的系统热设计,充电电流可以编程为高达 800mA。当 BAT 电压达到电池充电电压后,充电电流降至编程充电电流值的 1/10 时,TMI4054 自动终止充电周期,充电电流变为 0,CHAG ̅̅̅̅̅̅̅ 引脚状态发生变化。热调节功能可以调节充电电流以限制高功率条件或高环境温度应用期间的芯片温度。当输入电源被移除时,TMI4054 自动进入低电流状态,电池侧电流下降不到 1μA。其 SOT23-5 封装和更少的外部元件使 TMI4054 适合便携式应用。
TMI4056E 和 TMI4056EH 是完整的恒流和恒压线性充电器,适用于单节锂离子电池应用。TMI4056E 的默认电池充电电压固定为 4.2V,TMI4056EH 的默认电池充电电压固定为 4.35V,充电电流可通过 PROG 引脚上的外部电阻器进行编程。通过良好的系统热设计,充电电流可以编程为高达 1A。当 BAT 电压达到电池充电电压后,充电电流降至编程充电电流值的 1/10 时,TMI4056E 和 TMI4056EH 自动终止充电周期,充电电流变为 0,CHAG ̅̅̅̅̅̅̅̅ 和 STDBY ̅̅̅̅̅̅̅̅̅ 引脚状态发生变化。热调节功能可以调节充电电流以限制高功率条件或高环境温度应用期间的芯片温度。当输入电源断开时,TMI4056E 和 TMI4056EH 自动进入低电流状态,电池侧电流下降不到 1μA。ESOP8 封装和更少的外部元件使 TMI4056E 和 TMI4056EH 适合便携式应用。
关于开关设置 RTK-251-SinkCharger-RAA489118 有两个旋转开关,用于控制电池节数和电池充电电流限制。组合使用可支持电池电压范围从 5.632 至 28.336V,电池充电电流范围从 1A 至 6A。此外,通过更改 VIDWriter 工具生成的固件,该板可支持高达 10A 的电池充电电流。相关文档
关于开关设置RTK-251-Sinkcharger-RAA489118具有两个旋转开关,以控制电池电池的数量和电池充电电流极限。组合支撑电池电压范围为5.632至28.336V,电池充电电流范围从1A到6a。此外,可以通过更改VidWriter工具生成的固件来支持电池充电高达10A的电池。相关文档
关于开关设置RTK-251-Sinkcharger-RAA489118具有两个旋转开关,以控制电池电池的数量和电池充电电流极限。组合支撑电池电压范围为5.632至28.336V,电池充电电流范围从1A到6a。此外,可以通过更改VidWriter工具生成的固件来支持电池充电高达10A的电池。相关文档