摘要 安装超快速充电站 (UFCS) 对于推动电动汽车 (EV) 的普及至关重要。鉴于这种充电技术所需的大量电力,在充电站设计中整合可再生能源 (RES) 和储能系统 (ESS) 是减少其对电网和环境影响的一个有价值的选择。因此,本文提出了一个多目标优化问题,用于优化电动汽车 UFCS 中的光伏 (PV) 系统和电池 ESS (BESS) 的尺寸。提出的多目标函数旨在一方面最小化充电站的年化成本,另一方面最小化产生的污染物排放量。决策变量是 PV 板的数量和要安装的 ESS 的容量。通过应用线性标量化方法,优化问题简化为单目标问题。然后通过遗传算法 (GA) 优化等效的单目标函数。所提出的优化框架已应用于研究案例,结果证明 PV 和 ESS 可以显著降低年化成本和污染物排放量。最后,还进行了敏感性分析以验证所提解决方案的有效性。
■ 提高光伏效益的主要要求和可行性条件是: o 用户行为/灵活性: ▪ 优先考虑每日充电而非每周充电; ▪ 尽可能接受长时间慢速充电; ▪ 将充电限制为每日行程所需的千瓦时数,或在有光伏电力时增加充电量; o 技术方面: ▪ 将充电功率和固定存储功率限制为 7 千瓦左右; ▪ 选择最佳固定存储尺寸; ▪ 优先通过光伏为固定电池充电,而不是从电网充电。 ■ 为提高光伏效益,需要进行充电/放电控制、优化、光伏生产预测以及运营商和最终用户之间的沟通; ■ 强烈建议在当地元条件(场地、天气条件、用户概况等)下和使用寿命内对 PVCS 进行技术和经济优化,以充分利用光伏能源; ■ 精心设计的集成 V2G/V2H 的电源管理策略可以在满足用户需求的同时减少公共电网的峰值压力,并提供环境效益; ■ 必须考虑并开展 PVCS 和相关新服务的社会影响、社会接受度以及美学设计方面的问题,并将其作为初步研究;■ 设计方法和工具将有助于确定 PVCS 的最佳尺寸。
摘要:近年来,由于电动巴士温室气体 (GHG) 排放量低且对化石燃料的依赖程度低,其普及度迅速提升。电动巴士的不断增加增加了电网的充电负担。电动巴士充电需要在一定时间内提供大量电力。因此,开发集成微能源网 (MEG) 和混合储能的快速充电站 (FCS) 对电动巴士充电至关重要。本文介绍了一种电动巴士 FCS 设计,将 MEG 与混合储能和能源管理系统集成在一起。为了减少对主电网的依赖,本文引入了基于可再生能源 (即光伏) 的混合微能源网。此外,还开发了电池和飞轮混合储能,以缓解快速充电站在高峰时段的电力需求。此外,还开发了一种多输入 DC-DC 转换器,用于管理公共直流母线和多个能源之间的直流电传输。最后,设计了一个能源管理系统和控制器,以实现快速充电站的广泛性能。MATLAB Simulink 用于总体设计的仿真工作。测试了不同的测试用例场景,以评估所提出的 FCS 的性能参数并评估其性能。
摘要:本文在充电站基础上设计了光储氢一体化充电站,储能系统包括氢能储能用于制氢,充电站可同时为电动汽车和氢能汽车提供服务。为提高混合充电站独立供能能力、降低成本,对各部件进行合理配置。以一体化充电站配置成本和购电与充电站需求比例最小为目标,设计了一体化充电站能量流策略,构建了光储容量最优配置模型。采用NSGA-II算法寻优非劣Pareto解集,并采用模糊综合评判对最优配置进行评价。
摘要 - 虽然第五代细胞(5G)旨在提供千兆的峰值数据速度,低潜伏期,并且连接到数十亿个设备,而6G已经在路上,但生活在农村地区的世界一半人口仍面临与互联网相连的挑战。与城市地区相比,农村地区的用户受到低收入,高速远程连通性,有限的资源,极端天气和自然地理限制的极大影响。在此如何连接农村地区,以及提供连通性的困难引起了极大的关注。本文首先提供了有关改善农村地区网络覆盖的现有技术和策略的简要讨论,其优势,局限性和成本。接下来,我们主要关注资源有限区域中的无人机辅助网络。考虑到某些农村地区的无人机电池电池的限制以及电力供应稀缺,我们研究了可再生能源(RE)充电站部署的可能性和性能增强。我们概述了三种实际情况,并使用模拟结果证明,重新充电站可能是解决农村地区无人机电池有限的解决方案,特别是当它们可以收获并存储足够的能量时。最后,讨论了未来的作品和挑战。
结合分布式能源(DER)技术,例如太阳能和电池存储,可以通过为EV站提供能源(KWH)和容量(KW)来降低电力成本。der Technologies还可以在网格中断期间为周围社区提供备用功率。配对太阳能和电池能量存储特别令人信服,因为太阳能生成可以抵消白天为车辆充电所需的能源成本,而现场电池可用于以较低的成本为车辆收费,而电网的电力成本更高。
西澳能源政策局打算在整个延长期内与消费者和行业利益相关者合作,考虑为电动汽车充电站制定新的替代电力服务 (AES) 规范的可能性。该规范将成为西澳能源政策局进行的零售电力许可和豁免审查 4(零售许可审查)提出的注册框架的一部分。本文概述了西澳大利亚州的电动汽车行业和现行监管安排,并指出了西澳能源政策局认为对使用充电站服务的消费者必要的额外消费者保护措施。
摘要在这项研究中,讨论了电动汽车(EV)的充电站中的分散电源调度。电源调度问题通过实时的Stackelberg游戏解决。在此游戏中,领导者是EV充电站(EVC),而追随者是EV。EVC的偏好被设计为自我足够,为电动汽车提供充电服务,并保持电池储能系统(BESS)的能量水平,这些电池储能系统(BESS)是通过不同的实用程序功能描述的。此外,追随者的偏好是最大化其EV充电能力。学习算法利用共识网络以迭代分散的方式达到广义的Stackelberg平衡作为电动汽车之间的功率调度。模拟中的静态和动态案例研究都验证了所提出的策略的成功实施,对不确定性的灵活性以及对电动汽车数量的可配置性。与具有标准的集中基准策略相比,它的性能也出色,即平均电动汽车充电时间,贝斯的充电数量和排放率和能量交换到电网。最后,建立了一个缩小的实验实现,以验证基于游戏理论的策略的功能和有效性。
摘要 - 这项工作提出了一种基于地理空间和电网分析的重型电动汽车(EV)的快速充电站的位置选择的系统方法。地理空间分析基于道路网络和现有支持基础架构的现实世界地理信息系统(GIS)数据。基于节点级别对分配系统电压和功率损耗的潜在影响的分析实施网格分析。使用来自加利福尼亚州的现实,三相,不平衡的分配馈线和提取现实世界中的GIS数据的案例研究,用于证明提议的方法论在考虑电动和现有运输基础设施的重型电动汽车的快速充电站的位置选择中,提出的方法的透度和有效性。